| COURSE                                                                                                                                                                                                                                                                                                                                                                                                                                | CODE                                                                                                                                                                                                                                                                                                                                                                                      | COURSE NAME                                                                                                                                                     | L-T-P-C                                                                        | INT                      | YEAR O                               | OF<br>TION             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------|--------------------------------------|------------------------|
| EC2                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01                                                                                                                                                                                                                                                                                                                                                                                        | NETWORK THEORY                                                                                                                                                  | 3-1-0-4                                                                        |                          | 2016                                 |                        |
| Prerequisi                                                                                                                                                                                                                                                                                                                                                                                                                            | te: Nil                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                 |                                                                                |                          |                                      |                        |
| Course ob                                                                                                                                                                                                                                                                                                                                                                                                                             | jectives:                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |                                                                                |                          |                                      |                        |
| <ul> <li>To</li> <li>To</li> <li>To</li> <li>To</li> <li>netv</li> </ul>                                                                                                                                                                                                                                                                                                                                                              | make the<br>study tim<br>study the<br>develop<br>works.                                                                                                                                                                                                                                                                                                                                   | students capable of analyzing any line<br>e domain, phasor and Laplace transfor<br>transient response of networks subject<br>understanding of the concept of re | ear time invarian<br>m methods of lin<br>t to test signals.<br>sonance, couple | t electrie<br>near circ  | cal netwo<br>cuit analy<br>its and t | rk.<br>sis.<br>wo port |
| Syllabus:                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                           | UNIVEN                                                                                                                                                          | 0111                                                                           |                          |                                      |                        |
| Circuit variables and Circuit elements, Kirchhoff's laws, Network topology, Mesh and node<br>analysis of network, Laplace transform, Inverse Laplace transform, Solution of differential<br>equations by using Laplace transforms, Transient analysis of RL, RC, and RLC networks, Network<br>functions for the single port and two ports, Parameters of two-port network, Resonance, Coupled<br>circuits<br><b>Expected outcome:</b> |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                 |                                                                                |                          |                                      |                        |
| At the end                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                           | dise students will be able to analyze th                                                                                                                        | e finear time niv                                                              | arrante                  | leculcal c                           | incuits.               |
| 1. Ravish<br>2. Valken                                                                                                                                                                                                                                                                                                                                                                                                                | R., Netw<br>burg V.,                                                                                                                                                                                                                                                                                                                                                                      | ork Analysis and Synthesis, 2/e, McGr<br>Network Analysis, 3/e, PHI, 2011.                                                                                      | raw-Hill, 2015.                                                                |                          |                                      |                        |
| Reference                                                                                                                                                                                                                                                                                                                                                                                                                             | s:                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                 |                                                                                |                          |                                      |                        |
| <ol> <li>Sudhak<br/>Hill, 20</li> <li>Choudł</li> <li>Frankli</li> <li>Pandey</li> <li>Edmini</li> </ol>                                                                                                                                                                                                                                                                                                                              | <ol> <li>Sudhakar A,S. P. Shyammohan, Circuits and Networks- Analysis and Synthesis, 5/e, McGraw-<br/>Hill, 2015.</li> <li>Choudhary R., Networks and Systems, 2/e, New Age International, 2013.</li> <li>Franklin F. Kuo, Network Analysis and Synthesis, 2/e, Wiley India, 2012.</li> <li>Pandey S. K., Fundamentals of Network Analysis and Synthesis, 1/e, S. Chand, 2012.</li> </ol> |                                                                                                                                                                 |                                                                                |                          |                                      | cGraw-                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                           | Course Plan                                                                                                                                                     |                                                                                | 1                        |                                      |                        |
| Module                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                           | Course content (48 hrs                                                                                                                                          | )                                                                              | /                        | Hours                                | Sem.<br>Exam<br>Marks  |
| Ι                                                                                                                                                                                                                                                                                                                                                                                                                                     | Introduc<br>Kirchho<br>transfor                                                                                                                                                                                                                                                                                                                                                           | ction to circuit variables and circuit<br>off's Laws, Independent and depen-<br>mations                                                                         | elements, Revi<br>dent Sources, S                                              | ew of<br>Source          | 3                                    | 15                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       | Networl<br>Tie-set                                                                                                                                                                                                                                                                                                                                                                        | k topology, Network graphs, Trees, Inc<br>matrix and Cut-set matrix                                                                                             | cidence matrix,                                                                | -                        | 2                                    |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       | Solution<br>analysis                                                                                                                                                                                                                                                                                                                                                                      | n methods applied to dc and phasor ci<br>of network containing independent an                                                                                   | rcuits: Mesh and<br>ad dependent sou                                           | d node                   | 3                                    |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       | Networl<br>theorem<br>theorem                                                                                                                                                                                                                                                                                                                                                             | k theorems applied to dc and phaso<br>, Norton's theorem, Superposition<br>, Millman's theorem, Maximum powe                                                    | r circuits: They<br>theorem, Recip<br>er transfer theore                       | venin's<br>procity<br>em | 6                                    | 15                     |

|     | Laplace transform, properties                                                                                                                                                           | 4 |    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
|     | Laplace Transforms and inverse Laplace transform of common                                                                                                                              |   |    |
|     | functions, Important theorems: Time shifting theorem, Frequency                                                                                                                         |   |    |
|     | shifting theorem, Time differentiation theorem, Time integration                                                                                                                        |   |    |
|     | theorem, s domain differentiation theorem, s domain integration                                                                                                                         |   |    |
|     | theorem, Initial value theorem, Final value theorem                                                                                                                                     |   |    |
|     | FIRST INTERNAL EXAM                                                                                                                                                                     |   |    |
| III | Partial Fraction expansions for inverse Laplace transforms,                                                                                                                             | 3 |    |
|     | Solution of differential equations using Laplace transforms                                                                                                                             | A | 15 |
|     | Transformation of basic signals and circuits into s-domain                                                                                                                              | 2 |    |
|     | Transient analysis of RL, RC, and RLC networks with impulse, step, pulse, exponential and sinusoidal inputs                                                                             | 3 |    |
|     | Analysis of networks with transformed impedance and dependent sources.                                                                                                                  | 3 |    |
| IV  | Network functions for the single port and two ports, properties of<br>driving point and transfer functions,<br>Poles and Zeros of network functions, Significance of Poles and<br>Zeros | 3 | 15 |
|     | Time domain response from pole zero plot, Impulse Response                                                                                                                              | 1 |    |
|     | Network functions in the sinusoidal steady state, Magnitude and<br>Phase response                                                                                                       | 3 |    |
|     | SECOND INTERNAL EXAM                                                                                                                                                                    |   |    |
| V   | Parameters of two port network: impedance, admittance,<br>transmission and hybrid parameters, Interrelationship among<br>parameter sets                                                 | 5 | 20 |
|     | Series and parallel connections of two port networks                                                                                                                                    | 2 |    |
|     | Reciprocal and Symmetrical two port network                                                                                                                                             | 2 |    |
|     | Characteristic impedance, Image impedance and propagation                                                                                                                               | 2 |    |
|     | constant (derivation not required)                                                                                                                                                      |   |    |
| VI  | Resonance: Series resonance, bandwidth, Q factor and Selectivity,<br>Parallel resonance                                                                                                 | 3 | 20 |
|     | Coupled circuits: single tuned and double tuned circuits, dot<br>convention, coefficient of coupling, Analysis of coupled circuits                                                      | 4 |    |
|     | END SEMESTER EXAM                                                                                                                                                                       |   |    |

# 2014

# **Question Paper Pattern**

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 30% for theory and 70% for logical/numerical problems, derivation and proof.

| EC0DE     Image: Conservation of the second se |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prerequisite: Nil<br>Course objectives:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Course objectives:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1. To train students for an intermediate level of fluency with signals and systems in both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| continuous time and discrete time, in preparation for more advanced subjects in digital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| signal processing, image processing, communication theory and control systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2. To study continuous and discrete-time signals and systems, their properties and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| representations and methods those are necessary for the analysis of continuous and discrete-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| time signals and systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3. To familiarize with techniques suitable for analyzing and synthesizing both continuous-time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A To gain knowledge of time domain representation and analysis concepts as they relate to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4. To gain knowledge of time-domain representation and analysis concepts as they relate to<br>differential equations, difference equations, impulse response and convolution, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5 To study frequency-domain representation and analysis concepts using Fourier analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tools. Laplace Transform and Z-transform.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6. To study concepts of the sampling process, reconstruction of signals and interpolation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Syllabus:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Elementary Signals, Continuous time and Discrete time signals and systems, Signal operations,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Differential equation representation, difference equation representation, continuous time LTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| systems, Discrete Time LTI systems, Correlation between signals, orthogonality of signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Frequency domain representation, Continuous time Fourier Series ,Continuous Time Fourier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Transform, Laplace Transform, Inverse transform, unilateral Laplace Transform, transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| function, Frequency response, sampling, aliasing, Z transform, Inverse transform, unilateral Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Series and Discrete Time Fourier Transform (DTET) Analysis of Discrete Time I TI systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| using all transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Expected outcome:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 Define represent classify and characterize basic properties of continuous and discrete time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| signals and systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2. Represent the CT signals in Fourier series and interpret the properties of Fourier transform,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Laplace transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3. Outline the relation between convolutions, correlation and to describe the orthoganality of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.Illustrate the concept of transfer function and determine the Magnitude and phase response of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.Explain sampling theorem and techniques for sampling and reconstruction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.Determine z transforms, inverse z transforms signals and analyze systems using z transforms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Text Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1. Alan V. Oppenheim and Alan Willsky, Signals and Systems, PHI, 2/e, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2. Simon Haykin Signals & Systems, John Wiley, 2/e, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Kelerences:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1. Ananu Kumar, Signals and Systems, PHI, 5/e, 2015.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2. Maintoou Marvi, Signais and Systell, MC Oraw Hill (IIIIIa), 2013.<br>3. P Ramakrishna Rao, Shankar Prakriva, Signals and System MC Graw Hill Edn 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4 BP Lathi Priciples of Signal Processing & Linear systems Oxford University Press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5. Gurung, Signals and System, PHI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

6. Rodger E. Ziemer Signals & Systems - Continuous and Discrete, Pearson, 4/e, 2013

| Module | Course content (48 hrs)                                                                                                                             | Hours | Sem. Exam<br>Marks |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|
| Ι      | Elementary Signals, Classification and Representation of                                                                                            | 4     | 15                 |
|        | Continuous time and Discrete time signals, Signal operations                                                                                        |       |                    |
|        | Continuous Time and Discrete Time Systems -                                                                                                         | 3     |                    |
|        | Classification, Properties.                                                                                                                         |       |                    |
|        | Representation of systems: Differential Equation                                                                                                    | 2     |                    |
|        | representation of Continuous Time Systems. Difference                                                                                               | AM    |                    |
| TT     | Equation Representation of Discrete Systems.                                                                                                        | 2     | 15                 |
| 11     | Continuous Time LTT systems and Convolution Integral.                                                                                               | 3     | 15                 |
|        | Discrete Time LTI systems and linear convolution.                                                                                                   | 2     |                    |
|        | Stability and causality of LTI systems.                                                                                                             | 2     |                    |
|        | Correlation between signals, orthoganality of signals.                                                                                              | 2     |                    |
|        | FIRST INTERNAL EXAM                                                                                                                                 |       |                    |
| III    | Frequency Domain Representation of Continuous Time                                                                                                  | 3     | 15                 |
|        | Signals- Continuous Time Fourier Series and its properties.                                                                                         |       |                    |
|        | Convergence, Continuous Time Fourier Transform:<br>Properties.                                                                                      | 2     |                    |
|        | Laplace Transform, ROC, Inverse transform, properties, unilateral Laplace Transform.                                                                | 3     |                    |
|        | Relation between Fourier and Laplace Transforms.                                                                                                    | 1     |                    |
| IV     | Analysis of LTI systems using Laplace and Fourier<br>Transforms. Concept of transfer function, Frequency<br>response, Magnitude and phase response. | 3     | 15                 |
|        | Sampling of continuous time signals, Sampling theorem for lowpass signals, aliasing.                                                                | 3     |                    |
|        | SECOND INTERNAL EXAM                                                                                                                                |       | -                  |
| V      | Z transform, ROC, Inverse transform, properties, unilateral<br>Z transform.                                                                         | 3     | 20                 |
|        | Frequency Domain Representation of Discrete Time Signals,<br>Discrete Time Fourier Series and its properties.                                       | 3     |                    |
|        | Discrete Time Fourier Transform (DTFT) and its properties                                                                                           | 3     |                    |
| VI     | Relation between DTFT and Z-Transform, Analysis of                                                                                                  | 6     | 20                 |
|        | Discrete Time LTI systems using Z transforms and DTFT,                                                                                              |       |                    |
|        | Transfer function, Magnitude and phase response.                                                                                                    |       |                    |
|        | END SEMESTER EXAM                                                                                                                                   |       |                    |

**Assignment:** Convolution by graphical methods, Solution of differential equations. **Project:** Use of Matlab in finding various transforms, magnitude and phase responses.

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 30 % for theory and 70% for logical/numerical problems, derivation and proof.



| COURS             | E COURS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E NAME                              | L-T-P-C                   | S<br>INTI  | EAR O       | F          |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|------------|-------------|------------|
| EC20              | SOLID STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>FE DEVICES</b>                   | 3-1-0-4                   |            | 2016        | ION        |
| Prerequie         | ite• Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 5-1-0-4                   |            | 2010        |            |
| Course of         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                           |            |             |            |
| • To pro          | yjecuves:<br>vide an insight into the b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | asic semiconductor o                | concents                  |            |             |            |
| To pro     To pro | vide a sound understa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nding of current ser                | niconductor d             | levices_a  | nd_techno   | ology to   |
| apprec            | iate its applications to el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ectronics circuits and              | systems                   | T A        |             | 105, 10    |
| Syllabus          | Flemental and compour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ad semiconductors E                 | ermi-Dirac dis            | stribution | Fauilibr    | ium and    |
| steady st         | te conditions: Equilib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rium concentration                  | of electrons              | and hol    | es. Tem     | perature   |
| dependen          | e of carrier concentrati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on, Carrier transport               | in semicond               | uctors, H  | ligh field  | effects,   |
| Hall effec        | , Excess carriers in sem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iconductors, PN jun                 | ctions ,contac            | t potentia | l, electric | cal field, |
| potential         | nd charge density at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | junction, energy bar                | nd diagram, m             | inority ca | rrier dist  | ribution,  |
| ideal dioc        | e equation, electron and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hole component of                   | current in fo             | orward bia | ased pn j   | unction,   |
| piecewise         | linear model of a diversional diversion of a divers | ode, effect of tem                  | perature on<br>Tunnel Dio | VI chara   | cteristics  | , Diode    |
| contacts.         | ipolar junction transistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r. metal insulator sem              | iconductor de             | vices. M   | DSFET. F    | inFET      |
| Expected          | outcome:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                   |                           |            | ,           |            |
| The stude         | its should have a good k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nowledge in semicon                 | ductor theory             | and electi | onic dev    | ices.      |
| Text Boo          | ks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | Ť                         |            |             |            |
| 1. Ben G          | . Streetman and Sanjay H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kumar Banerjee, Solie               | d State Electro           | onic Devid | ces, Pears  | son, 6/e,  |
| 2010              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                           | N/ G       |             | 1 5        |
| 2. Achut          | nan, K N Bhat, Fundame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | entals of Semiconduct               | or Devices, Te            | e, McGrav  | w H111,20   | 15         |
| 1. Tvagi          | s.<br>M.S., Introduction to Sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | miconductor Material                | s and Devices             | . Wiley Iı | ndia, 5/e.  | 2008       |
| 2. Sze S.         | M. Physics of Semicond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | luctor Devices. John                | Wiley, 3/e, 20            | 05         |             | _000       |
| 3. Neam           | en, Semiconductor Physi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cs and Devices, McG                 | raw Hill, 4/e,            | 2012       |             |            |
| 4. Pierre         | , Semiconductor Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s Fundamentals, Pear                | son, 2006                 |            |             |            |
| 5. Rita J         | hn, Solid State Devices,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | McGraw-Hill, 2014                   |                           |            |             |            |
| 6. Bhatta         | charya .Shar <mark>ma, Solid S</mark> i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tate Electronic Device              | es, Oxford Un             | iversity P | ress, 2012  | 2          |
| 7. Dasgu          | pta and Dasgu <mark>pta , Semi</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mark>conducto</mark> r Devices : N | Modelling and             | Technolo   | ogy (PHI)   | 1          |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Course Plan                         |                           |            |             |            |
| Module            | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ourse content (48hrs                | )                         |            | Hours       | Sem.       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                           |            |             | Exam       |
| T                 | Elemental and cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mound somicond                      | lotors For                | ni Diraa   | 1           | Marks      |
| 1                 | distribution Equilibriur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n and steady state co               | onditions Equ             | ilibrium   | 4           | 13         |
|                   | concentration of electro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ons and holes, Tempe                | erature depend            | lence of   |             |            |
|                   | carrier concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , I                                 | 1                         |            |             |            |
|                   | Carrier transport in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | semiconductors, dri                 | ft, conductiv             | ity and    | 5           |            |
|                   | mobility, variation of m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | obility with temperat               | ure and doping            | g,         |             |            |
|                   | High Field Effects, Hall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | effect                              |                           | 1          | 0           | 17         |
|                   | Excess carriers in semi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | conductors: Generation              | on and recom              | dination   | 9           | 15         |
|                   | Einstein relations, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | continuity equations                | , Diffusion               | length,    |             |            |

Gradient of quasi Fermi level

FIRST INTERNAL EXAM

| III | PN junctions : Contact potential, Electrical Field, Potential and    | 9     | 15 |
|-----|----------------------------------------------------------------------|-------|----|
|     | Charge density at the junction, Energy band diagram, Minority        |       |    |
|     | carrier distribution, Ideal diode equation, Electron and hole        |       |    |
|     | component of current in forward biased p-n junction, piecewise       |       |    |
|     | linear model of a diode effect of temperature on V-I characteristics |       |    |
| IV  | Diode capacitances, switching transients, Electrical Breakdown in    | 9     | 15 |
|     | PN junctions, Zener and avalanche break down (abrupt PN              |       |    |
|     | junctions only), Tunnel Diode basics only, Metal Semiconductor       |       |    |
|     | contacts, Ohmic and Rectifying Contacts, current voltage             | NA    |    |
|     | characteristics                                                      | IVI   |    |
|     | λĭ                                                                   |       |    |
| V   | Bipolar junction transistor, current components, Minority carrier    | - 9   | 20 |
|     | distributions, basic parameters, Evaluation of terminal currents     | 2.000 |    |
|     | (based on physical dimensions), Transistor action, Base width        |       |    |
|     | modulation                                                           | _     |    |
| VI  | Metal Insulator semiconductor devices: The ideal MOS capacitor,      | 9     | 20 |
|     | band diagrams at equilibrium, accumulation, depletion and            |       |    |
|     | inversion, surface potential, CV characteristics, effects of real    |       |    |
|     | surfaces, work function difference, interface charge, threshold      |       |    |
|     | voltage                                                              |       |    |
|     | MOSFET: Output characteristics, transfer characteristics, sub        |       |    |
|     | threshold characteristics, MOSFET scaling (basic concepts)           |       |    |
|     | FinFET-structure and operation                                       | 1     |    |
|     | END SEMESTER EXAM                                                    |       |    |
|     |                                                                      |       |    |

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 70 % for theory, derivation, proof and 30% for logical/numerical problems.

2014

| COUR                      | SE                 | COURSE NAME                                          | L-T-P-C        |            | YEAR OF                   |           |  |
|---------------------------|--------------------|------------------------------------------------------|----------------|------------|---------------------------|-----------|--|
| COD                       | E                  |                                                      |                | INT        | RODUCTI                   | ON        |  |
| EC20                      | 4                  | Analog Integrated Circuits                           | 4-0-0-4        |            | 2016                      |           |  |
| Prerequis                 | Prerequisite: Nil  |                                                      |                |            |                           |           |  |
| Course ob                 | jective            | s:                                                   |                |            |                           |           |  |
| • To                      | equip t            | he students with a sound understandir                | ng of fundan   | nental co  | ncepts of ope             | erational |  |
| am                        | plifiers           |                                                      |                |            |                           |           |  |
| • To                      | know               | the diversity of operations that op                  | amp can j      | perform    | in a wide r               | ange of   |  |
| apr                       | olication          | ns ABDUL                                             | KA             | LA         | $ \mathcal{N} $           |           |  |
| • To                      | introdu            | ice a few special functions integrated of            | circuits.      | CA         | 111                       |           |  |
| • To                      | impart             | basic concepts and types of data conv                | erters         | 4          |                           |           |  |
| Syllabus:                 | Differe            | ntial amplifier configurations, Operati              | onal amplif    | iers, Bloc | k diagram, I              | ldeal op- |  |
| amp paran                 | neters, I          | Effect of finite open loop gain, bandw               | idth and slev  | w rate on  | circuit perfo             | ormance,  |  |
| op-amp ap                 | plicatio           | ons- linear and nonlinear, Active filte              | ers, Speciali  | zed IC a   | nd their app              | one and   |  |
| types                     | v ona              | ge Regulators types and its Application              | JIIS, Data Co  | JIVEILEIS  | , specification           | ons and   |  |
| Expected                  | outcon             | ne:                                                  |                |            |                           |           |  |
| • On                      | comp               | letion of this course, the students                  | will have a    | thoroug    | gh understar              | nding of  |  |
| ope                       | erationa           | ll amplifiers                                        |                |            | ,                         | 0         |  |
| • Stu                     | idents             | will be able to design circuits us                   | sing operati   | onal am    | plifiers for              | various   |  |
| app                       | olication          | ns                                                   | 0 1            |            | •                         |           |  |
| Text Book                 | ks:                |                                                      |                | 20         |                           |           |  |
| <b>1.</b> Sal             | livahana           | an S. ,V. <mark>S.</mark> K. Bhaaskaran, Linear Inte | egrated Circ   | uits, Tata | McGraw Hi                 | ill, 2008 |  |
| <b>2.</b> Fra             | inco S.,           | Design with Operational Amplifiers a                 | and Analog I   | Integrated | d Circuits, 3/            | e, Tata   |  |
| Mc                        | Graw I             | Hill, 2008                                           |                |            |                           |           |  |
| Reference                 | S:                 | Dall Onenstional Annalifians & Linear                | ICa Orfor      | 1 T Tue :  | the Dunga 2nd             | ladition  |  |
| 1. Da<br>201              | via A. 1<br>10.    | Bell, Operational Amplifiers & Linear                | ICs, Oxford    | 1 Univers  | ity Press, 2 <sup>m</sup> | edition,  |  |
| 2. Ga                     | yakwac             | R. A., Op-Amps and Linear Integrate                  | ed Circuits, 1 | Prentice I | Hall, 4/e, 201            | 10.       |  |
| 3. R.I<br>6 <sup>th</sup> | F. Coug<br>Edition | hlin & Fredrick Driscoll, Operational<br>PHI 2001    | Amplifiers     | & Linear   | Integrated C              | circuits, |  |
| 4. C.C                    | G. Clav            | ton, Operational Amplifiers, Butterwo                | rth & Comr     | anv Publ   | . Ltd./ Elsev             | ier.      |  |
| 197                       | 71.                | r r r                                                | I I I I I      | 5          |                           | - 7       |  |
| 5. Ro                     | y D. C.            | and S. B. Jain, Linear Integrated Circ               | uits, New A    | ge Interna | ational, 3/e, 2           | 2010.     |  |
| 6. Bo                     | tkar K.            | R., Integrated Circuits, 10/e, Khanna                | Publishers, 2  | 2010.      |                           |           |  |
|                           |                    | Course Plan                                          |                | 1          |                           |           |  |
| Module                    |                    | <b>Course content (54hrs)</b>                        | 10 1           |            | Hours                     | Sem.      |  |
|                           |                    |                                                      |                |            |                           | Exam      |  |
|                           | 5:00               |                                                      |                | •          |                           | Marks     |  |
| I                         | Differ             | ential amplifiers: Differential ampl                 | ifier config   | urations   | 6                         | 15        |  |
|                           | using              | BJ1, Large and small signal operation                | ions, Balan    | ced and    |                           |           |  |
|                           | volta              | anced output unterential amplifiers                  | stics of dif   | ferential  |                           |           |  |
|                           | ampli              | fier Frequency response of diffe                     | erential ar    | nlifiers   |                           |           |  |
|                           | Curre              | nt sources. Active load. Concept                     | of current     | mirror     |                           |           |  |
|                           | circui             | ts, Wilson current mirror circuits. mi               | ultistage dif  | ferential  |                           |           |  |
|                           | ampli              | fiers.                                               |                |            |                           |           |  |
|                           | Opera              | tional amplifiers: Introduction, Block               | diagram, I     | deal op-   | 5                         |           |  |

|                   | amp parameters, Equivalent Circuit, Voltage Transfer curve,                         |          |    |  |
|-------------------|-------------------------------------------------------------------------------------|----------|----|--|
|                   | gain, bandwidth and slew rate on circuit performance                                |          |    |  |
| II                | Op-amp with negative feedback: Introduction, feedback                               | 3        | 15 |  |
|                   | configurations, voltage series feedback, voltage shunt                              |          |    |  |
|                   | feedback, properties of Practical op-amp.                                           |          |    |  |
|                   | Op-amp applications: Inverting and non inverting amplifier, dc                      | 4        |    |  |
|                   | and ac amplifiers, peaking amplifier, summing, scaling and                          | 10 m 10  |    |  |
|                   | averaging amplifiers, instrumentation amplifier.                                    | NA -     |    |  |
|                   | FIRST INTERNAL EXAM                                                                 | 1 V 1    |    |  |
| III               | Op-amp applications: Voltage to current converter, current to                       | 6        | 15 |  |
|                   | voltage converter, integrator, differentiator, precision rectifiers,                |          |    |  |
|                   | log and antilog amplifier, Phase shift and wien bridge                              |          |    |  |
| 11/               | Square triangular and saw tooth wave generators                                     | 1        | 15 |  |
| 1 V               | Comparators zero crossing detector Schmitt trigger                                  | 4        | 15 |  |
|                   | characteristics and limitations                                                     |          |    |  |
|                   | Active filters. First and Second order Butterworth filter and its                   | 5        |    |  |
|                   | frequency response for LPF, HPF, BPF, BSF, and Notch filter.                        | -        |    |  |
|                   |                                                                                     |          |    |  |
| V                 | Specialized IC's and its applications:                                              | 4        | 20 |  |
|                   | Timer IC 555 (monostable & astable operation),                                      |          |    |  |
|                   | Voltage controlled oscillator, Analog Multiplier                                    |          |    |  |
|                   | PLL, operating principles, Applications: frequency                                  | 4        |    |  |
|                   | multiplication/division, Frequency synthesizer, AM & FM                             |          |    |  |
|                   | detection, FM modulator/Demodulator                                                 |          |    |  |
|                   | Monolithic Voltage Regulators: Three terminal voltage                               | 4        |    |  |
|                   | regulators 78XX and 79XX series, IC/23, low voltage and                             |          |    |  |
|                   | high voltage regulator, Current boosting, short circuit and fold<br>back protection |          |    |  |
| VI                | Data Converters: D/A converter , specifications , weighted                          | 4        | 20 |  |
|                   | resistor type, R-2R Ladder type, switches for D/A converters,                       |          | _0 |  |
|                   | high speed sample-and-hold circuits                                                 | <b>F</b> |    |  |
|                   | A/D Converters: Specifications, Flash type, Counter ramp                            | 4        |    |  |
|                   | type, Successive Approximation type, Single Slope type, Dual                        |          |    |  |
|                   | Slope type                                                                          |          |    |  |
| END SEMESTER EXAM |                                                                                     |          |    |  |

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 30 % for theory and 70% for logical/numerical problems, derivation and proof.

| COUR               | SE COURSE NAME                                                | L-T-P-      | YEAR            | OF            |  |
|--------------------|---------------------------------------------------------------|-------------|-----------------|---------------|--|
| COD<br>EC20        |                                                               | C           | INTRODU         |               |  |
| EC20               | 5 ELECTRONIC CIRCUITS                                         | 3-1-0-4     | 2016            |               |  |
| Prerequi           | Prerequisite: Nil                                             |             |                 |               |  |
| Course objectives: |                                                               |             |                 |               |  |
| • T                | b develop the skill of analysis and design of variou          | is analog   | circuits using  | discrete      |  |
| el                 | ectronic devices as per the specifications.                   |             |                 |               |  |
| Syllabus           | ADI ADDI II I                                                 | AT          | Ant             |               |  |
| High pas           | s and low pass RC circuits, Differentiator, Integrator,       | Analysis o  | of BJT biasing  | circuits,     |  |
| small sig          | anal analysis of transistor configurations using sma          | all signal  | hybrid $\pi$ mo | del, low      |  |
| frequency          | and high frequency analysis of BJT amplifiers,                | Cascade a   | implifiers, Wi  | de band       |  |
| amplifier          | s, Feedback amplifiers, Oscillators, Tuned amplifiers,        | Power am    | pliffers, Sweep | circuits      |  |
| and mult           | ivibrators, transistor voltage regulator, DC analysis of      | I MOSFE     | Analysis of m   | ultistago     |  |
| MOSEET             | amplifiers                                                    | circuits,   | Analysis of In  | unistage      |  |
| Export             |                                                               |             |                 |               |  |
| Expected           |                                                               | 1           | 1 1 1 1         | 1.00          |  |
| • A                | t the end of the course, students will be able to a           | inalyse an  | d design the    | different     |  |
| el<br>Tort Dag     | lectronic circuits using discrete electronic components.      |             |                 |               |  |
| Text Boo           | KS:                                                           | o Ortond    |                 | aa 2012       |  |
| • 50               | edra A. S. and K. C. Smith, Microelectronic Circuits, 6/      | e, Oxford   | University Pre  | ss, 2013      |  |
| • N                | illiman J. and C. Haikias, integrated Electronics, 2/e, M     | CGraw-Hi    | 11, 2010        |               |  |
| Keierend           |                                                               |             | 007             |               |  |
| 1. N               | eamen D., Electronic Circuits - Analysis and Design, 3/       | e, TMH, 2   | 2007            | 2/            |  |
| 2. R               | ashid M. H., Microelectronic Circuits - Analysis and De       | esign, Cen  | gage Learning   | , 2/e,        |  |
| 20                 | )]]<br>an an D. D. and M. S. Chausi. Introduction to Electron | in Cinquit  | Desion Desus    | 2002          |  |
| 3. 3]              | bencer R. R. and M. S. Ghausi, Introduction to Electron       | 10 Circuit  | Design, Pearso  | on, 2003      |  |
| 4. K               | Course Plan                                                   | 15          |                 |               |  |
| Madada             |                                                               |             | TTerrer         | G             |  |
| Module             | Course content (48 hrs)                                       |             | Hours           | Sem.          |  |
|                    | E at a                                                        |             |                 | Exam<br>Morka |  |
|                    | PC Circuits: Perpage of high page and low page PC             | airquita to | 5               | Marks         |  |
| т                  | sing step pulse and square wave inputs. Differentiato         | r Integrate | J               | 15            |  |
| I                  | BIT biasing circuits: Types O point Bias stability St         | ability     | 5               | 15            |  |
|                    | factors RC coupled amplifier and effect of various co         | mponents    | 5               |               |  |
|                    | Concept of DC and AC load lines Fixing of operating           | noint       |                 |               |  |
|                    | Classification of amplifiers                                  | , point,    |                 |               |  |
| II                 | Small signal analysis of CE. CB and CC configuration          | ns using sm | nall 7          | 15            |  |
|                    | signal hybrid $\pi$ model (gain, input and output impedar     | ice). Small |                 |               |  |
|                    | signal analysis of BJT amplifier circuits, Cascade amp        | olifier     |                 |               |  |
|                    | FIRST INTERNAL EXAM                                           |             | I               |               |  |
| ш                  | High frequency equivalent circuits of BIT Short circu         | uit current | 4               |               |  |
|                    | gain, cutoff frequency. Miller effect. Analysis of high       | frequency   |                 | 15            |  |
|                    | response of CE. CB and CC amplifiers                          | nequency    |                 | 10            |  |
|                    | Wide band amplifier: Broad banding techniques. Id             | w freque    | ncv 4           | 1             |  |
|                    | and high frequency compensation. Cascode amplifier.           | quoi        |                 |               |  |
| IV                 | Feedback amplifiers: Effect of positive and negative          | feedback    | on 3            | 15            |  |
|                    | gain, frequency response and distortion, Feedback to          | pologies a  | and             |               |  |

| its effect on input and output impedance, Feedback amplifier         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| circuits in each feedback topologies (no analysis required)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Oscillators & Tuned Amplifiers: Classification of oscillators,       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Barkhausen criterion, Analysis of RC phase shift and Wien bridge     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| oscillators, Working of Hartley, Colpitts and Crystal oscillators;   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Tuned amplifiers, synchronous and stagger tuning                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| SECOND INTERNAL EXAM                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Power amplifiers: Classification, Transformer coupled class A        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| power amplifier, push pull class B and class AB power amplifiers,    | N A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| efficiency and distortion, Transformer-less class B and Class AB     | IVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| power amplifiers, Class C power amplifier (no analysis required)     | A T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Switching Circuits: Simple sweep circuit, Bootstrap sweep circuit,   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Astable, Bistable, and Monostable multivibrators, Schmitt Trigger    | 2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Transistor based voltage regulator: Design and analysis of shunt and | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| series voltage regulator, load and line regulation, Short circuit    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| protection                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| MOSFET amplifiers: Biasing of MOSFET amplifier, DC analysis of       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| single stage MOSFET amplifier, small signal equivalent circuit.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Small signal voltage and current gain, input and output impedances   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| of CS configuration, MOSFETCascade amplifier                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| END SEMESTER EXAM                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                      | its effect on input and output impedance, Feedback amplifier<br>circuits in each feedback topologies (no analysis required)<br>Oscillators & Tuned Amplifiers: Classification of oscillators,<br>Barkhausen criterion, Analysis of RC phase shift and Wien bridge<br>oscillators, Working of Hartley, Colpitts and Crystal oscillators;<br>Tuned amplifiers, synchronous and stagger tuning<br>SECOND INTERNAL EXAM<br>Power amplifiers: Classification, Transformer coupled class A<br>power amplifier, push pull class B and class AB power amplifiers,<br>efficiency and distortion, Transformer-less class B and Class AB<br>power amplifiers, Class C power amplifier (no analysis required)<br>Switching Circuits: Simple sweep circuit, Bootstrap sweep circuit,<br>Astable, Bistable, and Monostable multivibrators, Schmitt Trigger<br>Transistor based voltage regulator: Design and analysis of shunt and<br>series voltage regulator, load and line regulation, Short circuit<br>protection<br>MOSFET amplifiers: Biasing of MOSFET amplifier, DC analysis of<br>single stage MOSFET amplifier, small signal equivalent circuit.<br>Small signal voltage and current gain, input and output impedances<br>of CS configuration, MOSFETCascade amplifier<br>END SEMESTER EXAM | its effect on input and output impedance, Feedback amplifier<br>circuits in each feedback topologies (no analysis required)Oscillators & Tuned Amplifiers: Classification of oscillators,<br>Barkhausen criterion, Analysis of RC phase shift and Wien bridge<br>oscillators, Working of Hartley, Colpitts and Crystal oscillators;<br>Tuned amplifiers, synchronous and stagger tuning6SECOND INTERNAL EXAMPower amplifiers: Classification, Transformer coupled class A<br>power amplifier, push pull class B and class AB power amplifiers,<br>efficiency and distortion, Transformer-less class B and Class AB<br>power amplifiers, Class C power amplifier (no analysis required)5Switching Circuits: Simple sweep circuit,<br>Astable, Bistable, and Monostable multivibrators, Schmitt Trigger4Transistor based voltage regulator: Design and analysis of shunt and<br>series voltage regulator, load and line regulation, Short circuit<br>protection5MOSFET amplifiers: Biasing of MOSFET amplifier, DC analysis of<br>single stage MOSFET amplifier, small signal equivalent circuit.<br>Small signal voltage and current gain, input and output impedances<br>of CS configuration, MOSFETCascade amplifier5 |  |  |  |

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 60 % for theory, derivation, proof and 40% for logical/numerical problems.



| COURS                | E                                                                             | COURSE NAME                         | L-T-P-C        | 2                      | YEAF           | R OF           |
|----------------------|-------------------------------------------------------------------------------|-------------------------------------|----------------|------------------------|----------------|----------------|
| CODE                 | -                                                                             |                                     | 2002           | ]                      | NTRODI         | UCTION         |
| EC206                |                                                                               | Computer Organisation               | 3-0-0-3        |                        | 201            | 16             |
| Prerequis            | site:                                                                         | EC207 Logic circuit design          |                |                        |                |                |
| Course of            | oject                                                                         | ives:                               |                |                        |                |                |
| • To im              | part                                                                          | knowledge in different aspects o    | f processor de | esign.                 |                |                |
| • To dev             | velop                                                                         | o understanding about processor     | architecture.  | ZAT                    | A & A          |                |
| • To im              | part                                                                          | knowledge in programming conc       | cepts.         | (AL)                   | AM             |                |
| • To dev             | • To develop understanding on I/O accessing techniques and memory structures. |                                     |                |                        |                |                |
| Syllaburg            |                                                                               |                                     |                |                        |                |                |
| Synabus:             | 1                                                                             | its of a computer Arithmetic C      | irouita Dro    | paggar arabit          | actura In      | structions and |
| addressing           | r un                                                                          | its of a computer, Antimetic C      | cro architect  | ure design r           | rocess (       | lesign or data |
| path and c           | contr                                                                         | ol units, I/O accessing technique   | s. Memory c    | oncepts, mei           | morv inter     | face, cash and |
| virtual me           | mor                                                                           | y concepts                          | , i j          | <b>I</b> ,             | <b>J</b>       | ,              |
| Expected             | out                                                                           | come:                               |                |                        |                |                |
| The stude            | nt sh                                                                         | ould be able to:                    |                |                        |                |                |
| • Illustra           | ate tl                                                                        | he structure of a computer          |                |                        |                |                |
| • Catego             | orize                                                                         | different types of memories         |                |                        |                |                |
| • Explai             | n va                                                                          | rious techniques in computer de     | sign.          |                        | _              |                |
| Text Bool            | ks:                                                                           |                                     | : :            | 10                     | 4 A <b>1</b> 4 |                |
| I. Da                | W10                                                                           | money Harris, Saran L Harris, D     | igital Design  | and Compu              | ter Archite    | ecture, Morgan |
| K                    | uIIII                                                                         |                                     |                |                        |                |                |
| Reference            | es:                                                                           |                                     |                | _                      |                |                |
| 1. Willia            | m St                                                                          | allings: "Computer Organisation     | and Archite    | cture", Pears          | on Educat      | tion.          |
| 2. John F            | P Hay                                                                         | yes: "Computer Architecture and     | Organisation   | n", Mc Graw            | Hill.          |                |
| 3. Andre             | w S                                                                           | Tanenbaum: "Structured Compu        | ter Organisat  | tion", Pearso          | n Educatio     | on.            |
| 4. Craig             | Zack                                                                          | ter: "PC Hardware : The Comple      | te Reference   | ", ТМН.<br>м. Ма Силии | TT:11          |                |
| 5. Carl H<br>6 David | $\Delta$ F                                                                    | atterson and John L. Hennessey      | "Computer      | Organisation           | HIII.          | an" Fourth     |
| U. David<br>Editio   | n. M                                                                          | organ Kaufmann.                     | , computer v   | Organisation           |                | gii , i ourui  |
|                      | 7                                                                             | Course Plan                         |                |                        | /              |                |
| Module               |                                                                               | Course content (                    | 42 hrs)        | 1                      | Hours          | Sem. Exam      |
|                      |                                                                               |                                     | 014            | 6. 1                   |                | Marks          |
| Ι                    | Fu                                                                            | nctional units of a computer: An    | ithmetic Circ  | cuits –                | 4              | 15             |
|                      | Ad                                                                            | der- Carry propagate adder, Ripp    | ole carry adde | er, Basics             |                |                |
|                      |                                                                               | magazity look ahead and prefix adde | r, Subtractor, |                        |                |                |
|                      | Shi                                                                           | fters and rotators Multiplication   | Division       |                        | 3              |                |
|                      | Nu                                                                            | mber System- Fixed Point & Flo      | ating Point    |                        | 1              |                |
| П                    | Ar                                                                            | chitecture – Assembly Language      | Instructions   | . Operands             | 2              | 15             |
|                      | -R                                                                            | Registers, Register set, Memory, (  | Constants      | , - <u>p</u> -runus    | _              |                |
|                      | Ma                                                                            | chine Language –R-Type, I-Typ       | e, J-Type Ins  | structions,            | 3              |                |
|                      | Inte                                                                          | erpreting Machine Language cod      | le             |                        |                |                |
|                      |                                                                               | FIRST INTERNAL                      | EXAM           |                        |                |                |

| III | Addressing Modes - register only, immediate, base, PC-       | 3  | 15 |  |  |
|-----|--------------------------------------------------------------|----|----|--|--|
|     | relative, Pseudo – direct                                    |    |    |  |  |
|     | Steps for Executing a Program – Compilation, Assembling,     | 3  |    |  |  |
|     | Linking, Loading                                             |    |    |  |  |
|     | Pseudoinstuctions, Exceptions, Signed and Unsigned           | 3  |    |  |  |
|     | Instructions, Floating Point Instructions                    |    |    |  |  |
| IV  | Microarchitecture- design process                            | 2  | 15 |  |  |
|     | Single cycle processor, Single cycle data path, single cycle | 2  |    |  |  |
|     | control                                                      | 2  |    |  |  |
|     | multi cycle processor, multi cycle data path, multi cycle    | 3  |    |  |  |
|     |                                                              | AL |    |  |  |
|     | SECOND IN IERNAL EXAM                                        |    |    |  |  |
| V   | Memory & I/O systems – I/O accessing techniques:             | 3  | 20 |  |  |
|     | programmed, interrupt driven and DMA, DMA bus                |    |    |  |  |
|     | arbitration                                                  |    |    |  |  |
|     | Memory Arrays – Bit Cells, Organization, Memory Ports        | 3  |    |  |  |
|     | Memory types- DRAM, SRAM, Register Files, ROM                |    |    |  |  |
|     |                                                              |    |    |  |  |
| VI  | Memory - Hierarchy, Performance analysis                     | 1  | 20 |  |  |
|     | Cache Memory – direct mapped, multi way set associate        | 3  |    |  |  |
|     | cache, Fully associate cache                                 |    |    |  |  |
|     | Virtual Memory – Address Translation, Page Table,            | 3  |    |  |  |
|     | Translation Look aside Buffer, Memory Protection,            |    |    |  |  |
|     | replacement polices                                          |    |    |  |  |
|     | END SEMESTER EXAM                                            |    |    |  |  |
| 1   |                                                              |    |    |  |  |

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 50 % for theory and 50% for logical/numerical problems, derivation and proof.

14

| COUR                                                                    | RSE                                                        | COURSE NAME L-T-P-C                                                                                               | YEAH         | R OF          |  |
|-------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------|---------------|--|
| EC2                                                                     | 07                                                         | LOGIC CIRCUIT DESIGN 3-0-0-3                                                                                      | <u>201</u>   | 16            |  |
| Prerequi                                                                | isite:Ni                                                   |                                                                                                                   |              |               |  |
| Course                                                                  | bjectiv                                                    | · · · · · · · · · · · · · · · · · · ·                                                                             |              |               |  |
| • T                                                                     | o work                                                     | with a positional number systems and numeric representations                                                      |              |               |  |
| • T                                                                     | o introc                                                   | luce basic postulates of Boolean algebra and show the correlation                                                 | between B    | oolean        |  |
| ez                                                                      | xpressio                                                   | ADIADDIII VALAA                                                                                                   | A            |               |  |
| • T                                                                     | o outlin<br>equentia                                       | the the formal procedures for the analysis and design of combination<br>al circuits                               | nal circuits | s and         |  |
| • T                                                                     | o study                                                    | the fundamentals of HDL                                                                                           |              |               |  |
| • T                                                                     | o desig                                                    | n and implement combinational circuits using basic programmable                                                   | blocks       |               |  |
| • T                                                                     | o desig                                                    | n and implement synchronous sequential circuits                                                                   |              |               |  |
| Syllabus                                                                | :                                                          | OTTITEICOITI                                                                                                      |              |               |  |
| Positional<br>Program                                                   | il Num<br>mable L                                          | ber Systems, Boolean algebra, Combinational Logic, HDL con<br>ogic Devices, Sequential Logic, Sequential Circuits | ncepts ,D    | igital ICs,   |  |
| Expected                                                                | d outco                                                    | me:                                                                                                               |              |               |  |
| The stude                                                               | ent shou                                                   | ild able to:                                                                                                      |              |               |  |
| 1. Compa                                                                | are vari                                                   | ous positional number systems and binary codes                                                                    |              |               |  |
| 2. Apply                                                                | Boolea                                                     | n algebra in logic circuit design                                                                                 |              |               |  |
| 3. Design                                                               | n combi                                                    | national and sequential circuits                                                                                  |              |               |  |
| 4. Design                                                               | n and in                                                   | plement digital systems using basic programmable blocks                                                           |              |               |  |
| 5. Formu                                                                | late var                                                   | ious digital systems using HDL                                                                                    |              |               |  |
| Text Boo                                                                | oks:                                                       |                                                                                                                   |              |               |  |
| 1. D                                                                    | onald I                                                    | O Givone, Digital Principles and Design, Tata McGraw Hill, 2003                                                   |              |               |  |
| 2. Jo                                                                   | ohn F W                                                    | Vakerly, Digital Design Principles and Practices, Pearson Prentice                                                | Hall, 2007   |               |  |
| Refe                                                                    | rences:                                                    |                                                                                                                   |              |               |  |
| I.Ronal                                                                 |                                                            | ci, Digital Systems, Pearson Education, 11 <sup>th</sup> edition, 2010                                            |              |               |  |
| 2.1 nom<br>3 Moris                                                      | as L Fio<br>Mano                                           | Digital Design Prentice Hall of India 3 <sup>rd</sup> edition 2009                                                |              |               |  |
| 4.John 1                                                                | M Yarb                                                     | rough, Digital Logic Applications and Design, Cenage learning, 20                                                 | 009          |               |  |
| 5.David                                                                 | Money                                                      | Harris, Sarah L Harris, Digital Design and Computer Architectury                                                  | e, Morgan    |               |  |
| Kaufn                                                                   | nann – Ì                                                   | Elsevier, 2009                                                                                                    | , C          |               |  |
|                                                                         |                                                            | Course Plan                                                                                                       |              |               |  |
| Modul                                                                   |                                                            | Course content (42 hrs)                                                                                           | Hours        | Sem.          |  |
| e                                                                       |                                                            | 2014                                                                                                              |              | Exam<br>Marks |  |
| Ι                                                                       | Numb                                                       | er systems- decimal, binary, octal, hexa decimal, base conversion                                                 | 2            | 15            |  |
|                                                                         | 1's and 2's complement, signed number representation 2     |                                                                                                                   |              |               |  |
|                                                                         | Binary arithmetic, binary subtraction using 2's complement |                                                                                                                   |              |               |  |
| Binary codes (grey, BCD and Excess-3), Error detection and correcting 2 |                                                            |                                                                                                                   |              |               |  |
|                                                                         |                                                            | : Parity(odd, even), Hamming code (7,4), Alphanumeric codes :                                                     |              |               |  |
| п                                                                       | Logic                                                      | expressions Boolean laws Duality De Morgan's law Logic                                                            | 2            | 15            |  |
|                                                                         | function                                                   | ons and gates                                                                                                     | 2            | 10            |  |
|                                                                         | Canor                                                      | ical forms: SOP, POS, Realisation of logic expressions using K-                                                   | 2            |               |  |
|                                                                         |                                                            |                                                                                                                   |              |               |  |

|            | map (2,3,4 variables)                                                                                                                                                                                                                                                                 |             |    |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|
|            | Design of combinational circuits – adder, subtractor, 4 bit                                                                                                                                                                                                                           | 4           |    |
|            | adder/subtractor, BCD adder, MUX, DEMUX, Decoder, BCD to 7                                                                                                                                                                                                                            |             |    |
|            | segment decoder, Encoder, Priority encoder, Comparator (2/3 bits)                                                                                                                                                                                                                     |             |    |
|            | FIRST INTERNAL EXAM                                                                                                                                                                                                                                                                   |             |    |
| III        | Introduction to HDL : Logic descriptions using HDL, basics of modeling (only for assignments)                                                                                                                                                                                         | 2           | 0  |
|            | Logic families and its characteristics: Logic levels, propagation delay, fan in, fan out, noise immunity, power dissipation, TTL subfamilies                                                                                                                                          | $\Lambda^1$ | 15 |
|            | NAND in TTL (totem pole, open collector and tri-state),<br>CMOS:NAND, NOR, and NOT in CMOS, Comparison of logic<br>families (TTL,ECL,CMOS) in terms of fan-in, fan-out, supply voltage,<br>propagation delay, logic voltage and current levels, power dissipation<br>and noise margin | 2           |    |
|            | Programmable Logic devices - ROM, PLA, PAL, implementation of simple circuits using PLA                                                                                                                                                                                               | 2           |    |
| IV         | Sequential circuits - latch, flip flop (SR, JK, T, D), master slave JK FF,                                                                                                                                                                                                            | 3           | 15 |
|            | conversion of FFs, excitation table and characteristic equations                                                                                                                                                                                                                      |             |    |
|            | Asynchronous and synchronous counter design, mod N counters,                                                                                                                                                                                                                          | 5           |    |
|            | random sequence generator                                                                                                                                                                                                                                                             |             |    |
| <b>X</b> 7 | SECOND INTERNAL EXAM                                                                                                                                                                                                                                                                  | 2           | 20 |
| V          | LOAD/SHIFT                                                                                                                                                                                                                                                                            | 3           | 20 |
|            | Shift register counter - Ring Counter and Johnson Counter                                                                                                                                                                                                                             |             |    |
|            | Mealy and Moore models, state machine ,notations, state diagram, state                                                                                                                                                                                                                | 3           |    |
|            | table, transition table, excitation table, state equations                                                                                                                                                                                                                            |             |    |
| VI         | Construction of state diagram – up down counter, sequence detector                                                                                                                                                                                                                    | 3           | 20 |
|            | Synchronous sequential circuit design - State equivalence                                                                                                                                                                                                                             | 2           |    |
|            | State reduction – equivalence classes, implication chart                                                                                                                                                                                                                              | 2           |    |
|            | END SEMESTER EXAM                                                                                                                                                                                                                                                                     |             |    |
| Assignn    | nents. Estd.                                                                                                                                                                                                                                                                          |             | I  |

#### **Assignments:**

- 1. Simple combinational circuit design using MUX, DEMUX, PLA & PAL
- 2. HDL simulation of circuits like simple ALU, up-down counter, linear feedback shift register, sequence generator

2014

# **Question Paper Pattern**

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 50 % for theory, derivation, proof and 50% for logical/numerical problems.

| COURS       | E COURSE NAME                                                     | L-T-P-C       | YE                       | AR OF        |
|-------------|-------------------------------------------------------------------|---------------|--------------------------|--------------|
| CODE        |                                                                   |               | INTRO                    | DUCTION      |
| EC208       | ANALOG COMMUNICATION<br>ENGINEERING                               | 3-0-0-3       | 2                        | 2016         |
| Prerequis   | ite: EC205 Electronic circuits                                    |               |                          |              |
| Course of   | iectives:                                                         |               |                          |              |
| • To stu    | ly the concepts and types of modulation schemes.                  |               |                          |              |
| • To stu    | ly different types of radio transmitters and receivers.           |               |                          |              |
| • To stu    | ly the effects of noise in analog communication syste             | ems           | NA                       |              |
| Syllabus:   | AL ADDOL N                                                        |               | 1 4 1                    |              |
| Elements    | of communication system, Need for modulation, a                   | mplitude M    | odulation                | , amplitude  |
| modulator   | circuit, demodulator circuit, AM transmitters, Typ                | es of AM, A   | AM Rece                  | iver, Angle  |
| modulatio   | n: principles of frequency modulation, phase m                    | odulation, f  | requency                 | modulator    |
| circuits, F | M transmitters, FM receiver, Noise in communication               | ation system  | n, Effect                | of noise in  |
| Analog C    | communication Systems, Telephone systems, sta                     | andard telep  | phone se                 | et, cordless |
| telephones  |                                                                   |               |                          |              |
|             |                                                                   |               |                          |              |
| Expected    | outcome:                                                          |               |                          |              |
| • Studer    | t will understand the fundamentals ideas of noises                | and its effe  | ct in com                | munication   |
| system      |                                                                   |               |                          |              |
| • Studer    | ts can explain the principle and working of AM, FM                | , and PM sys  | stem and                 | transmitters |
| and red     | eivers.                                                           |               |                          |              |
| • Studer    | ts will be able to know the basic ide <mark>a</mark> s of PSTN ar | nd advanced   | line com                 | munication   |
| system      | S                                                                 |               |                          |              |
| Text Bool   | s:                                                                |               |                          |              |
| 1. Sir      | non Haykin, Communication Systems, Wiley 4/e, 20                  | 006.          |                          |              |
| 2. To       | masi, Electronic Communications System, Pearson,                  | 5/e,2011.     |                          |              |
| Reference   | s:                                                                |               |                          |              |
| 3. De       | nnis Roody and John Coolen, Electronic Communic                   | ation, Pearso | on, 4/e, 20              | )11.         |
| 4. To       | masi, Advanced Electronic Communications Systems                  | , Pearson, 6  | <b>/e, 20</b> 12.        |              |
| 5. Ta       | ub ,Schilling, Saha, Principles of communication syst             | em,McGraw     | Hill,201                 | 3.           |
| 6. Ge       | orge Kennedy, ElectronicCommunication Systems, I                  | McGrawHill    | , <mark>4</mark> /e, 200 | 8.           |
| 7. Bla      | ke, Electronic Communication system, Cengage, 2/                  | e , 2012.     | /                        |              |
|             | Course Plan                                                       |               |                          |              |
| Module      | Course content (42 hrs)                                           |               | Hours                    | Sem.         |
|             |                                                                   |               |                          | Exam         |
|             | 2014                                                              |               |                          | Marks        |
| Ι           | Introduction, elements of communication system, ti                | me and        | 2                        | 15           |
|             | frequency domains, Need for modulation                            | ee            |                          |              |
|             | Noise in communication system, shot noise, therma                 | l noise,      | 5                        |              |
|             | white noise, partition noise, flicker noise, burst noise          | e, signal to  |                          |              |
|             | noise ratio, noise figure, noise temperature, narrow              | band          |                          |              |
|             | noise, representation in terms of in-phase and quadr              | ature         |                          |              |
|             | components, envelope and phase components, sine                   | wave plus     |                          |              |
|             | narrow band noise.                                                |               |                          |              |
| II          | Amplitude modulation: Sinusoidal AM modulation ind                | ex, Average   | 4                        |              |
|             | power, Effective voltage and current, Nonsinusoidal mo            | dulation      | 2                        |              |
|             | Amplitude modulator circuits, Amplitude demodulator c             | circuit,      | 3                        |              |

|     | AM transmitters                                                                                                                                                                                                                                          |   |    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
|     | FIRST INTERNAL EXAM                                                                                                                                                                                                                                      | • |    |
| III | AM Receiver, super heterodyne receiver, detector, tuning<br>range, tracking, sensitivity and gain, Image rejection, double<br>conversion, adjacent channel rejection, Automatic Gain<br>Control (AGC).                                                   | 4 | 15 |
|     | Single Sideband Modulation, Principles, Balanced Modulators,<br>Singly & Doubly Balanced Modulators, SSB Generation, Filter<br>Method, Phasing Method & Third Method, SSB Reception,<br>Modified SSB Systems, Pilot Carrier SSB & ISB, Companded<br>SSB. | 5 |    |
| IV  | Angle modulation:<br>Frequency modulation, Sinusoidal FM, Frequency spectrum,<br>modulation index ,average power, Non-sinusoidal modulation,<br>deviation ratio, comparison of AM and FM                                                                 | 3 | 15 |
|     | Phase modulation, Equivalence between PM and FM,<br>Sinusoidal Phase Modulation, Digital Phase Modulation.                                                                                                                                               | 3 |    |
|     | SECOND INTERNAL EXAM                                                                                                                                                                                                                                     |   |    |
|     | Angle modulator Circuits : Varactor Diode Modulators, Transistors<br>Modulators,<br>FM Transmitters: Direct & Indirect Methods.                                                                                                                          | 2 |    |
| V   | FM receiver, slope detector, balanced slope detector, Foster-<br>Seeley discriminator, Ratio Detector, Quadrature detector, PLL<br>demodulator, Automatic Frequency Control, Amplitude limiters,<br>Pre-emphasis and De-emphasis,                        | 3 | 20 |
|     | Effect of noise in analog communication Systems- AM<br>Systems, DSBSC AM, SSB AM, Angle modulation,<br>Threshold Effect in Angle modulation.                                                                                                             | 4 |    |
| VI  | Telephone systems, standard telephone set, basic call procedures and tones, DTMF, cordless telephones.                                                                                                                                                   | 4 |    |
|     | END SEMESTER EXAM                                                                                                                                                                                                                                        |   |    |

#### Assignment

# Estd.

- Study of
  - 1. The telephone circuit Local subscriber loop, Private-line circuits, Voice-frequency circuit arrangements.
  - 2. The public telephone network Instruments, Local loops, Trunk circuits and exchanges, Local central office Exchanges, Automated central office switches and Exchanges.

# **Question Paper Pattern**

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 30 % for theory and 70% for logical/numerical problems, derivation and proof.

| Course c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ode Course Name                                                                                                                                                                                                                                                                                                                                                                                                                               | L-T-P - Credits                                                                                   |          | Year of            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------|--------------------|--|--|
| ECOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2104                                                                                              | Int      | roduction          |  |  |
| EC205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analog Electronics                                                                                                                                                                                                                                                                                                                                                                                                                            | 3-1-0-4                                                                                           |          | 2016               |  |  |
| Prerequis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hies:Mi                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |          |                    |  |  |
| Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>To familiarize basic electronic elements and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              | d their characteristic                                                                            | s        |                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>To develop understanding about BIT and F</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                  | FT circuits                                                                                       | 5        |                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>To understand the concent of power amplifi</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                | ier and differential a                                                                            | molifier | 2                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • To understand the concept of power amplifi                                                                                                                                                                                                                                                                                                                                                                                                  | ier and differentiar a                                                                            | mpimers  | <b>&gt;</b>        |  |  |
| Syllabus         Diode: Diode as a circuit element-diode clipping circuits-clamping circuits-voltage regulators-<br>BJT: Operating point of a BJT-thermal runaway-h parameter model of a BJT-frequency response<br>of amplifiers-FET: Construction and characteristics of JFET and MOSFET-Feedback: - Concepts<br>– negative and positive feedback-Power Amplifiers- Class A, B, AB, C, D & S power amplifier-<br>Differential Amplifiers:- The BJT differential pair- Large and small signal operation-MOS<br>differential amplifier- Large and small signal operation-UJT- 555 Timer IC, PLL.         Expected outcome.       •         • Will get knowledge on electronic elements and their characteristics.         Text Book:         1. Allen Mottershead, <i>Electronic Devices and Circuits: An Introduction</i> , Prentice Hall of India.         2. V. Boylestad and Nashelsky, <i>Electronic Devices and Circuits</i> , Pearson Education         3. Ramakant A Gayakwad, <i>Op- Amps and Linear Integrated Circuits</i> , Prentice Hall of India |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |          |                    |  |  |
| Reference<br>1. Schillin<br>2. Theodo<br>3. Coughl<br>4. K. R. B<br>5. Somana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>References:</li> <li>1. Schilling and Belove, Electronic Circuits, McGraw Hill</li> <li>2. Theodore F. Bogart Jr., Electronic Devices and Circuits,</li> <li>3. Coughlin and Driscoll, Operational amplifiers and Linear Integrated Circuits,</li> <li>4. K. R. Botkar, Integrated Circuits, Khanna Publishers</li> <li>5. Somanathan Nair, Linear Integrated Circuits – Analsysis, Design &amp; Application, Wiley-India</li> </ul> |                                                                                                   |          |                    |  |  |
| Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   | Hours    | Sem. Exam<br>Marks |  |  |
| Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Diode:</b><br>Diode as a circuit element - load line - piecew<br>– single-phase half wave and full wave rec<br>voltage regulation - ripple factor - rectifier eff<br>rectifier - rectifier filters - diode clipping circuit<br>and two level clippers - clamping circuits –<br>Zener voltage regulators.                                                                                                                                   | ise linear model<br>tifier circuits –<br>iciency - bridge<br>its - single level<br>Zener diodes - | 9        | 15%                |  |  |
| II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>BJT:</b><br>Operating point of a BJT – DC biasing -<br>thermal runaway - AC Concepts –role of<br>amplifiers – common emitter AC equivalent cin<br>gain and impedance calculations- h parameter<br>–cascaded amplifiers, frequency response of am                                                                                                                                                                                           | bias stability -<br>capacitors in<br>rcuit - amplifier<br>model of a BJT<br>nplifiers             | 9        | 15%                |  |  |

|    | FIRST INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                          |    |     |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|--|
| Ш  | FET<br>Construction and characteristics of JFET and MOSFET, biasing<br>a JFET and MOSFET, JFET and MOSFET small signal model<br>- CS and CD amplifiers.<br>feedback: - Concepts – negative and positive feedback<br>feedback -feedback connection types - practical feedback<br>circuits                                            | 9  | 15% |  |  |
| IV | <b>Power Amplifiers</b><br>Class A, B, AB, C, D & S power amplifiers - harmonic distortion<br>efficiency -wide band amplifier - broad banding techniques - low<br>frequency and high frequency compensation -cascode amplifier - broad<br>banding using inductive loads - Darlington pairs.                                         | 10 | 15% |  |  |
|    | SECOND INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                         |    |     |  |  |
| V  | OSCILLATORS & MULTI VIBRATORS<br>Classification of oscillators – Barkhausen criteria- operation and<br>analysis of RC phase shift – Hartely and Colpitts oscillators – Multi<br>vibrators – astable, mono stable and bi stable multi vibrators                                                                                      | 9  | 20% |  |  |
| VI | UJT-construction –working-UJT oscillator-UPS-brief<br>overview of online UPS &off line UPS-SMPS-operation<br>Timer IC 555: Functional diagram- astable and monostable<br>modes<br>Phase Locked Loops: Principles – building blocks of PLL-<br>VCO-lock and capture ranges - capture process - frequency<br>multiplication using PLL | 10 | 20% |  |  |
|    | END SEMESTER EXAM                                                                                                                                                                                                                                                                                                                   |    |     |  |  |

# **QUESTION PAPER PATTERN**

Maximum Marks : 100 Exam Duration:3 hours

# PART A: FIVE MARK QUESTIONS

PART A: FIVE MARK QUESTIONS 8 compulsory questions –1 question each from first four modules and 2 questions each from  $(8 \times 5 = 40 \text{ marks})$ last two modules

# PART B: 10 MARK QUESTIONS

5 questions uniformly covering the first four modules. Each question can have maximum of three sub questions, if needed. Student has to answer any 3 questions

(3 x10 = 30 marks)

# PART C: 15 MARK QUESTIONS

4 questions uniformly covering the last two modules. Each question can have maximum of four sub questions, if needed. Student has to answer any two questions

(2 x 15 = 30 marks)

| Course code        | Course Name                    | L-T-P - Credits | Year of      |  |  |  |
|--------------------|--------------------------------|-----------------|--------------|--|--|--|
|                    |                                |                 | Introduction |  |  |  |
| EC212              | Linear Integrated Circuits and | 4-0-0 -4        | 2016         |  |  |  |
|                    | Digital Electronics            |                 |              |  |  |  |
| Prerequisites :Nil |                                |                 |              |  |  |  |

# **Course Objectives**

- To introduce the concepts for realizing functional building blocks in ICs and applications of IC.
- To know the fundamentals of combinational and sequential digital circuits.

### Syllabus

Ideal OP-AMP characteristics, DC characteristics- AC characteristics- offset voltage and current: voltage series feedback - shunt feedback amplifiers, differential amplifier- frequency response of OP-AMP- Basic applications of OP-AMP - summer, differentiator ,integrator, V/I &I/V converter-Instrumentation amplifier-Basic Comparatorsregenerative comparatorsmultivibrators- waveform Generators- clippers- clampers- peak detector- S/H circuit- First and Second order active filter-, D/A converter (R-2R ladder and weighted resistor types)- A/D converter - Dual slope- successive approximation and flash types- 555 Timer circuit - Functional block- characteristics & applications:- IC 566-voltage controlled oscillator circuit- OP-AMP-Voltage regulator-Series- Shunt and Switching regulator- Review of number system:- types and conversion- codes- Boolean algebra: De-Morgan's theorem- Minimization of Boolean function using K-maps & Quine McCluskey method- Combinational circuits: -Adder- subtractors- code converters- encoders- decoders- multiplexers and demultiplexers- Combinational Logic by using Multiplexers- ROM- PLA and PAL-Memories - ROM, Static and Dynamic RAM- Read/Write Memory- EPROM, EEPROM-Flip flops - SR- D- JK - T and Master Slave FF- Shift registers-Counters-Asynchronous and Synchronous Counters- Up-Down Counter- Modulo Counter- Ring Counter-Analysis of Asynchronous Counters

#### **Expected outcome:**

• The students will learn to know about the IC'S and their application, digital circuits, combinational and sequential circuits.

#### **Text Book:**

1. Ramakant A.Gayakward, Op-amps and Linear Integrated Circuits, IV edition, Pearson Education, 2003 / PHI.

- 2. D.Roy Choudhary, Sheil B.Jani, Linear Integrated Circuits, II edition, New Age, 2003.
- 3. M. Morris Mano, Digital Logic and Computer Design, Prentice Hall of India, 2002

# **References:**

1. Robert F.Coughlin, Fredrick F.Driscoll, Op-amp and Linear ICs, Pearson Education, 4th edition, 2002 /PHI.

- 2. David A.Bell, Op-amp & Linear ICs, Prentice Hall of India, 2nd edition, 1997.
- 3. Charles H.Roth, Fundamentals Logic Design, Jaico Publishing, IV edition, 2002.
- 4. Floyd, Digital Fundamentals, 8th edition, Pearson Education, 2003.

| Course Plan |                                                                                                                                                                                                                                                                                                                                   |       |                    |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|
| Module      | Contents                                                                                                                                                                                                                                                                                                                          | Hours | Sem. Exam<br>Marks |
| I           | OP-AMP-Ideal OP-AMP characteristic-offset voltage and current: voltage series feedback and shunt feedback amplifiers, differential amplifier- frequency response of OP-AMP- Basic applications of op-amp – differentiator and integrator, V/I &I/V converter.                                                                     | 9     | 15%                |
| II          | Instrumentation amplifier- Basic Comparators- regenerative<br>comparators- multivibrators- waveform generators- clippers,<br>clampers- peak detector- S/H circuit- isolation amplifier - log<br>and antilog amplifiers analog multipliers                                                                                         | 9     | 15%                |
|             | FIRST INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                        |       | 1                  |
| ш           | D/A converter (R-2R ladder and weighted resistor types)- A/D<br>converter - Dual slope, successive approximation and flash<br>types<br>Active filters-filter transfer function-Butterworth and<br>Chebyshev filters-First order and second order function for<br>low-pass, high-pass, band –pass, band-stop and all –pass filters | 9     | 15%                |
| IV          | Review of number system- types and conversion- codes- one's<br>complement and two's complement-Arithmetic operations of<br>Binary<br>Boolean algebra: De-Morgan's theorem- Minimization of<br>Boolean function using K-maps &QuineMcCluskey method.                                                                               | 9     | 15%                |
|             | SECOND INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                       |       |                    |
| V           | Combinational circuits: Adder- subtractor- code converters,<br>encoders, decoders, multiplexers and demultiplexers.<br>Implementation of Combinational Logic by using Multiplexers,<br>ROM, PLA and PAL.<br>Memories – ROM- Static and Dynamic RAM- Read/Write<br>Memory- EPROM- EEPROM                                           | 10    | 20%                |
| VI          | Flip flops - SR, D, JK, T and Master Slave Flip Flop -Shift<br>registers -Counters-Asynchronous and Synchronous Counters-<br>Up-Down Counter- Modulo Counter- Ring Counter-Analysis<br>of Asynchronous Counters-sequence detector.                                                                                                | 10    | 20%                |

# **QUESTION PAPER PATTERN**

Maximum Marks : 100 PART A: FIVE MARK QUESTIONS Exam Duration:3 hours

8 compulsory questions –1 question each from first four modules and 2 questions each from last two modules (8 x 5= 40 marks)

# PART B: 10 MARK QUESTIONS

5 questions uniformly covering the first four modules. Each question can have maximum of three sub questions, if needed. Student has to answer any 3 questions ( $3 \times 10 = 30$  marks) **PART C**: 15 MARK QUESTIONS

4 questions uniformly covering the last two modules. Each question can have maximum of four sub questions, if needed. Student has to answer any two questions

(2 x 15 = 30 marks)

| COURSE                                                                   | COURSE NAME                                            | L-T-P-                   | YEAR OF                     |  |  |  |  |
|--------------------------------------------------------------------------|--------------------------------------------------------|--------------------------|-----------------------------|--|--|--|--|
| EC230                                                                    | LOGIC CIRCUIT DESIGN LAB                               | 0-0-3-1                  | 2016                        |  |  |  |  |
| Prerequisite:                                                            | EC207 Logic circuit design                             | 0001                     |                             |  |  |  |  |
| Course objectives:                                                       |                                                        |                          |                             |  |  |  |  |
| • To study the working of standard digital ICs and basic building blocks |                                                        |                          |                             |  |  |  |  |
| To state     To desi                                                     | ign and implement combinational circuits               | ousie ounan              |                             |  |  |  |  |
| To desi                                                                  | ign and implement sequential circuits                  | LZ A T                   | A A A                       |  |  |  |  |
| List of Experi                                                           | ments: -(Minimum 12 experiments are t                  | o he done)               | AM                          |  |  |  |  |
| List of Experi                                                           | intents(ivininium 12 experiments are t                 | o be uone)               | C A I                       |  |  |  |  |
| 1 Realiza                                                                | ation of functions using basic and universa            | l gates (SOP             | and POS forms)              |  |  |  |  |
| 2 Design                                                                 | and Realization of half /full adder and sub            | tractor using            | a basic gates and universal |  |  |  |  |
| z. Design                                                                | and realization of han /full adder and suc             | fildetor using           | 5 busic gates and universal |  |  |  |  |
| 3 4 bit ac                                                               | der/subtractor and BCD adder using 7483                |                          |                             |  |  |  |  |
| 4. $2/3$ bit                                                             | binary comparator.                                     | •                        |                             |  |  |  |  |
| 5. Binary                                                                | to Grav and Grav to Binary converters.                 |                          |                             |  |  |  |  |
| 6. Study of                                                              | of Flip Flops: S-R. D. T. JK and Master Sl             | lave JK FF u             | sing NAND gates             |  |  |  |  |
| 7. Asynch                                                                | pronous Counter: Realization of 4-bit coun             | ter                      | 0 0                         |  |  |  |  |
| 8. Asynch                                                                | pronous Counter: Realization of Mod-N co               | ounters.                 |                             |  |  |  |  |
| 9. Asynch                                                                | nronous Counter:3 bit up/down counter                  |                          |                             |  |  |  |  |
| 10. Synchr                                                               | onous Counter: Realization of 4-bit up/dov             | wn counter.              |                             |  |  |  |  |
| 11. Synchr                                                               | onous Counter: Realization of Mod-N cou                | nters.                   |                             |  |  |  |  |
| 12. Synchr                                                               | onous Counter:3 bit up/down counter                    |                          |                             |  |  |  |  |
| 13. Shift R                                                              | egister: Study of shift right, SIPO, SISO, I           | PIPO, PISO               | (using FF & 7495)           |  |  |  |  |
| 14. Ring co                                                              | ounter and Johnson Counter. (using FF & 7              | 7495)                    |                             |  |  |  |  |
| 15. Realiza                                                              | ation of counters using IC's (7490, 7492, 7            | 493).                    |                             |  |  |  |  |
| 16. Multip                                                               | lexers and De-multiplexers using gates an              | d ICs. (7415             | 0, 74154),                  |  |  |  |  |
| 17. Realiza                                                              | ation of combinational circuits using MUX              | & DEMUX                  |                             |  |  |  |  |
| 18. Randor                                                               | m sequence generator.                                  |                          |                             |  |  |  |  |
| 19. LED D                                                                | visplay: Use of BCD to 7 Segment decoder               | / driver chip            | to drive LED display        |  |  |  |  |
| 20. Static a                                                             | and Dyna <mark>mic Characte</mark> ristic of NAND gate | e (M <mark>OS/TTL</mark> | )                           |  |  |  |  |
| Expected outcome:                                                        |                                                        |                          |                             |  |  |  |  |
| The student sh                                                           | ould able to: 2012                                     | 18. 9                    |                             |  |  |  |  |
| 1. Design                                                                | and demonstrate functioning of various co              | ombination c             | ircuits                     |  |  |  |  |
| 2. Design                                                                | and demonstrate functioning of various se              | equential circ           | cuits                       |  |  |  |  |

3. Function effectively as an individual and in a team to accomplish the given task

| COURSE CODE                                                        | COURSE NAME                                         | L-T-P-C            | YEAR OF             |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------|--------------------|---------------------|--|--|--|
| EC231                                                              | Electronic Devices & Circuits Lab                   | 0-0-3-1            | 2016                |  |  |  |
| Prerequisite: Should have registered for EC205 Electronic circuits |                                                     |                    |                     |  |  |  |
|                                                                    |                                                     |                    |                     |  |  |  |
| Course objectives:                                                 |                                                     |                    |                     |  |  |  |
| • To study the w                                                   | orking of analog electronic circuits.               | ATAA               | A                   |  |  |  |
| • To design and                                                    | implement analog circuits as per the specific       | ations using disc  | erete electronic    |  |  |  |
| components.                                                        | FCHNOLOG                                            | ICA                |                     |  |  |  |
| List of Experiments:                                               | (12 Mandatory Experiments)                          | IICA               |                     |  |  |  |
| 1. VI Cha                                                          | racteristics of rectifier and zener diodes          | TV                 |                     |  |  |  |
| 2. RC inte                                                         | egrating and differentiating circuits (Transien     | t analysis with d  | ifferent inputs and |  |  |  |
| frequer                                                            | ncy response)                                       |                    |                     |  |  |  |
| 3. Clippir                                                         | ng and clamping circuits (Transients and trans      | sfer characteristi | cs)                 |  |  |  |
| 4. Fullwa                                                          | ve Rectifier -with and without filter- ripple fa    | ctor and regulat   | ion                 |  |  |  |
| 5. Simple                                                          | Zener voltage regulator (load and line regula       | ition)             |                     |  |  |  |
| 6. Charac                                                          | teristics of BJT in CE configuration and evaluation | uation of parame   | eters               |  |  |  |
| 7. Charac                                                          | teristics of MOSFET in CS configuration and         | l evaluation of p  | arameters           |  |  |  |
| 8. RC cou                                                          | ipled CE amplifier - frequency response char        | acteristics        |                     |  |  |  |
| 9. MOSF                                                            | ET amplifier (CS) - frequency response chara        | acteristics        |                     |  |  |  |
| 10. Cascad                                                         | e amplifier – gain and frequency response           |                    |                     |  |  |  |
| 11. Cascod                                                         | le amplifier -frequency response                    |                    |                     |  |  |  |
| 12. Feedba                                                         | ck amplifiers (current series, voltage series) -    | gain and freque    | ency response       |  |  |  |
| 13. Low fr                                                         | equency oscillators –RC phaseshift, Wien bri        | dge,               |                     |  |  |  |
| 14. High fr                                                        | equency oscillators –Colpitt's and Hartley          |                    |                     |  |  |  |
| 15. Power                                                          | amplifiers (transformer less) - Class B and C.      | lass AB            |                     |  |  |  |
| 16. Transis                                                        | tor series voltage regulator (load and line reg     | ulation)           |                     |  |  |  |
| 17. Tuned                                                          | amplifier - frequency response                      |                    |                     |  |  |  |
| 18. Bootstr                                                        | ap sweep circuit                                    |                    |                     |  |  |  |
| 19. Multiv                                                         | ibrators -Astable, Monostable and Bistable          |                    |                     |  |  |  |
| 20. Schmit                                                         | t trigger                                           |                    |                     |  |  |  |
| Expected outcome:                                                  |                                                     |                    |                     |  |  |  |
| The student should ab                                              | le to:                                              |                    |                     |  |  |  |
| 1. Design and der                                                  | monstrate functioning of various discrete ana       | log circuits.      |                     |  |  |  |
| 2. Function effec                                                  | tively as an individual and in a team to accon      | nplish the given   | task.               |  |  |  |

| COURSE                                                                                  | COURSE NAME                                             | L-T-P-C          | YEAR OF                   |  |  |  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------|------------------|---------------------------|--|--|--|
| EC232                                                                                   | ANALOG INTEGRATED                                       | 0-0-3-1          | 2016                      |  |  |  |
| EC232                                                                                   | CIRCUITS LAB                                            | 0001             |                           |  |  |  |
| <b>Prerequisite:</b> Should have registered for EC204 Analog Integrated Circuits        |                                                         |                  |                           |  |  |  |
| Course objectives:                                                                      |                                                         |                  |                           |  |  |  |
| • To acquire skills in designing and testing analog integrated circuits                 |                                                         |                  |                           |  |  |  |
| • To ex                                                                                 | pose the students to a variety of practical ci          | rcuits using va  | rious analog ICs          |  |  |  |
|                                                                                         | pose the students to a variety of practical er          | reality asing va | nous unulog ies.          |  |  |  |
| List of Expe                                                                            | riments: (Minimum 12 experiments are t                  | o be done)       |                           |  |  |  |
| -                                                                                       | UNIVER                                                  | SILY             |                           |  |  |  |
| 1. Famil                                                                                | iarization of Operational amplifiers - Ir               | verting and l    | Non inverting amplifiers, |  |  |  |
| freque                                                                                  | ency response, Adder, Integrator, comparato             | ors.             |                           |  |  |  |
| 2. Measu                                                                                | urement of Op-Amp parameters.                           |                  |                           |  |  |  |
| 3. Differ                                                                               | ence Amplifier and Instrumentation amplif               | ier.             |                           |  |  |  |
| 4. Schm                                                                                 | itt trigger circuit using Op –Amps.                     |                  |                           |  |  |  |
| 5. Astab                                                                                | le and Monostable multivibrator using Op -              | Amps.            |                           |  |  |  |
| 6. Timer                                                                                | IC NE555                                                |                  |                           |  |  |  |
| 7. Triang                                                                               | gular and square wave generators using Op-              | - Amps.          |                           |  |  |  |
| 8. Wien                                                                                 | bridge oscillator using Op-Amp - without &              | & with amplitu   | de stabilization.         |  |  |  |
| 9. RC Pl                                                                                | hase shift Oscillator.                                  |                  |                           |  |  |  |
| 10. Precis                                                                              | sion rectifiers using Op-Amp.                           |                  |                           |  |  |  |
| 11. Active                                                                              | e second order filters using Op-Amp (LPF,               | HPF, BPF and     | BSF).                     |  |  |  |
| 12. Notch                                                                               | filters to eliminate the 50Hz power line free           | equency.         |                           |  |  |  |
| 13. IC vo                                                                               | ltage regulators.                                       |                  |                           |  |  |  |
| 14. A/D c                                                                               | conve <mark>rters- counter ramp an</mark> d flash type. |                  |                           |  |  |  |
| 15. D/A C                                                                               | Converters-ladder circuit.                              |                  |                           |  |  |  |
| 16. Study                                                                               | of PLL IC: free running frequency lock ran              | nge capture ran  | ge                        |  |  |  |
| Expected outcome:                                                                       |                                                         |                  |                           |  |  |  |
| The student s                                                                           | hould able to:                                          |                  |                           |  |  |  |
| 1. Desig                                                                                | n and demonstrate functioning of various a              | nalog circuits   |                           |  |  |  |
| 2. Students will be able to analyze and design various applications of analog circuits. |                                                         |                  |                           |  |  |  |

-/

| C   | COURSE             | COURSE NAME                                           | L-T-P-C          | YEAR OF             |
|-----|--------------------|-------------------------------------------------------|------------------|---------------------|
|     | CODE               |                                                       |                  | ION                 |
|     | EC233              | ELECTRONICS DESIGN AUTOMATION                         | 0-0-3-1          | 2016                |
|     |                    | LAB                                                   |                  |                     |
| Pr  | erequisite:        | Nil                                                   |                  |                     |
|     | ourse Obje         | ctives :                                              |                  |                     |
| Th  | e primary          | objective of this course is to familiarize the s      | tudents, how     | to simulate the     |
| ele | ctronics/di        | gital circuits, signals and systems using the soft-wa | res which are    | available for the   |
|     | stems              | an methodologies for the rapid design and vern        | ication of co    | inplex electronic   |
| Sy: | st of Evere        | ises / Fyneriments                                    | - ( /            |                     |
| 1   | Introduct          | ion to SPICE                                          | 1101             | 1 Lo                |
| 1   | <u>IIIII Juuci</u> |                                                       | IV               |                     |
|     | Institutio         | n can use any one circuit simulation package with scl | nematic entry    | like EDWinXP.       |
|     | PSpice, M          | ultisim, Proteus or CircuitLab.]                      | j                | ······,             |
|     | Introducti         | on to SPICE software. Recognize various schematic     | symbols /mo      | del parameters of   |
|     | resistor, c        | apacitor, inductor, energy sources (VCVS, CCVS,       | Sinusoidal so    | ource, pulse, etc), |
|     | transform          | er, DIODE, BJT, FET, MOSFET, etc., units & value      | s. Use SPICE     | Schematic Editor    |
|     | to draw ar         | d analyse (DC, AC, Transient) simple analog and di    | gital electronic | e circuits.         |
|     | List of Ex         | periments using SPICE [Six experiments mandat         | ory]             |                     |
|     | Simulation         | n of following circuits using SPICE [Schematic e      | ntry of circui   | ts using standard   |
|     | package, A         | Analysis – Transient, AC, DC]                         |                  |                     |
|     | I. Po              | tential divider network                               |                  |                     |
|     | 2. RC              | Integrating and differentiating circuits              |                  |                     |
|     | 5. D1              | ode, BJI and MOSFEI characteristics                   |                  |                     |
|     | 4. DI<br>5 P(      | coupled amplifier (Single & two stages)               |                  |                     |
|     | 6 R                | Coscillator (RC phase shift / Wien Bridge)            |                  |                     |
|     | 0. KC<br>7 As      | table multivibrator                                   |                  |                     |
|     | 8. Tr              | uth table verification of basic and universal gates   |                  | 1                   |
|     | 9. Ha              | If adder /full adder circuits using gates             |                  |                     |
|     | 10.41              | bit adder/BCD adder                                   |                  | /                   |
|     | 11. En             | coder/Multiplexers                                    |                  |                     |
|     | 12. Fli            | pflops/Counters                                       |                  |                     |
| 2   | Introduct          | ion to MATLAB                                         | 1                |                     |
|     |                    |                                                       |                  |                     |
|     | [Institutio        | n can use any one numerical computational package     | like SciLab, (   | Octave, Spyder,     |
|     | Python (so         | cipy) or Freemat instead of MATLAB                    |                  |                     |
|     | Fundamer           | stale basic operations on among matrix consultants    | mborg ata        | mint and function   |
|     | files plott        | inals, basic operations on array, matrix, complex nu  | inders etc., So  | cript and function  |
|     | Writing si         | mple programs for handling arrays and plotting of r   | nathematical f   | unctions plotting   |
|     | of analog          | discrete and noise signals analysing the simple el    | ectronic circu   | its/network using   |
|     | node and           | nesh equations.                                       |                  | norwork using       |
|     | List of Ex         | periments [Four experiments mandatory]                |                  |                     |
|     | Write pro          | gram and obtain the solutions                         |                  |                     |
|     | 1. Solve           | /plot the mathematical equations containing cor       | nplex numbe      | rs, array, matrix   |
|     | multip             | lication and quadratic equations etc                  | -                | -                   |

|   | 2. Obtain different types of plots (2D/3D, surface plot, polar plot)                             |  |  |  |  |
|---|--------------------------------------------------------------------------------------------------|--|--|--|--|
|   | 3. Generate and plot various signals like sine square, pulse in same window.                     |  |  |  |  |
|   | 4. Plot the diode/transistor characteristics.                                                    |  |  |  |  |
|   | 5. Solve node, mesh and loop equations of simple electrical/network circuits.                    |  |  |  |  |
|   | 6. Find the poles and zeros hence plot the transfer functions/polynomials                        |  |  |  |  |
|   | 7. Sort numbers in ascending order and save to another text file using text read and sort        |  |  |  |  |
|   | function after reading n floating point numbers from a formatted text file stored in the         |  |  |  |  |
|   | system.                                                                                          |  |  |  |  |
|   | 8. Plot a full wave rectified waveform using Fourier series                                      |  |  |  |  |
| 3 | Introduction to HDL                                                                              |  |  |  |  |
|   | TECHNIQUORICAL                                                                                   |  |  |  |  |
|   | [Institution can choose VHDL or Verilog as language to describe the problem and any one          |  |  |  |  |
|   | simulation/synthesis tool like Xilinix ISE, Modelsim, QSim, verilog, VHDL, EDwinXP or            |  |  |  |  |
|   | ORCAD etc. for the simulation.]                                                                  |  |  |  |  |
|   | UINIVLINDIII                                                                                     |  |  |  |  |
|   | List of Experiments using HDL                                                                    |  |  |  |  |
|   |                                                                                                  |  |  |  |  |
|   | Write the HDL code to realise and simulate the following circuits: (at least 4 of the following) |  |  |  |  |
|   | 1. Basic gates/universal gates                                                                   |  |  |  |  |
|   | 2. Combinational Circuits (Half adder/Half subtractor)                                           |  |  |  |  |
|   | 3. Full adder in 3 modelling styles (Dataflow/structural/Behavioural)                            |  |  |  |  |
|   | 4. Multiplexer/De-multiplexer                                                                    |  |  |  |  |
|   | 5. Decoder/Encoder                                                                               |  |  |  |  |
|   | 6. 4 bit adder/BCD adder                                                                         |  |  |  |  |
|   | 7. Flipflops (SR,JK,T,D)                                                                         |  |  |  |  |
|   | 8. Binary Counters                                                                               |  |  |  |  |
|   | 9. Finite state machines                                                                         |  |  |  |  |
| E | Expected outcomes:                                                                               |  |  |  |  |
|   | 1. An ability to apply knowledge of computer, science, and engineering to the analysis of        |  |  |  |  |
|   | electrical and electronic engineering problems.                                                  |  |  |  |  |
| 1 | 2. An ability to design systems which include hardware and software components.                  |  |  |  |  |
| 1 | 2 An ability to identify formulate and colve anging another much long                            |  |  |  |  |

2014

- An ability to identify, formulate and solve engineering problems.
   An ability to use modern engineering techniques

| Course code                                                                                                         | Course Name                                                                                   | L-T-P - Credits           | Year of        |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------|----------------|--|--|--|--|--|
| EC234                                                                                                               | Linear Integrated Circuits and                                                                | 0-0-31                    | 2016           |  |  |  |  |  |
|                                                                                                                     | Digital Electronics Laboratory                                                                |                           |                |  |  |  |  |  |
| Prerequisite: I                                                                                                     | EC212 Linear integrated circuits and digita                                                   | l electronics             |                |  |  |  |  |  |
| Course Object                                                                                                       | tives                                                                                         | uite used in simple syste | mannfiguration |  |  |  |  |  |
| • To stud                                                                                                           | • To study various digital and linear integrated circuits used in simple system configuration |                           |                |  |  |  |  |  |
|                                                                                                                     | ADI ARDI II I                                                                                 | CALAM                     |                |  |  |  |  |  |
| List of Exercises/Experiments : (10 experiments are mandatory)<br>1. Operational Amplifiers (IC741)-Characteristics |                                                                                               |                           |                |  |  |  |  |  |
| 2. Square, trian                                                                                                    | ngular and ramp generation using op-amps                                                      | UICAL                     |                |  |  |  |  |  |
| 3. Log and Antilog amplifiers.                                                                                      |                                                                                               |                           |                |  |  |  |  |  |
| 5. Astable and                                                                                                      | monostable multivibrators using op-amps                                                       |                           |                |  |  |  |  |  |
| 6. Active notch                                                                                                     | filter realization using op-amps                                                              |                           |                |  |  |  |  |  |
| 7. Wein bridge                                                                                                      | s oscillator using OpAmp                                                                      |                           |                |  |  |  |  |  |
| 8.OpAmp Integ                                                                                                       | grator and Differentiator.                                                                    |                           |                |  |  |  |  |  |
| 9.Code convert                                                                                                      | ter - Binary to gray and Gray to binary.                                                      |                           |                |  |  |  |  |  |
| 10.Adder and Subtractor Circuits using logic IC                                                                     |                                                                                               |                           |                |  |  |  |  |  |
| 11.Implementa                                                                                                       | 11.Implementation of combinational logic circuits using MUX IC                                |                           |                |  |  |  |  |  |
| 12.Design and                                                                                                       | 12.Design and implementation of multiplexer and demultiplexer.                                |                           |                |  |  |  |  |  |
| 13.3-bit synchr                                                                                                     | ronous counter design                                                                         |                           |                |  |  |  |  |  |
| 14.Asynchrono                                                                                                       | 14.Asynchronous counter design and Mod-n counter                                              |                           |                |  |  |  |  |  |
| 15.Shift registers - SISO/SIPO & PISO/PIPO                                                                          |                                                                                               |                           |                |  |  |  |  |  |
| 16.Ring and Jo                                                                                                      | hnson Counters                                                                                |                           |                |  |  |  |  |  |
|                                                                                                                     | Estu.                                                                                         |                           |                |  |  |  |  |  |
| List of major equipment                                                                                             |                                                                                               |                           |                |  |  |  |  |  |
| CRO, Function generator, Single power supply, Dual power supply, Digital multimeter,                                |                                                                                               |                           |                |  |  |  |  |  |
| Expected outcome .                                                                                                  |                                                                                               |                           |                |  |  |  |  |  |
| On completion , the students will be able to                                                                        |                                                                                               |                           |                |  |  |  |  |  |
| 1. Design simple circuits like amplifiers using OP-AMPs.                                                            |                                                                                               |                           |                |  |  |  |  |  |
| 2. Design waveform Generating circuits.                                                                             |                                                                                               |                           |                |  |  |  |  |  |
| 5. Understand Digital concepts<br>4. Logically explain the concepts of combinational and sequential circuits        |                                                                                               |                           |                |  |  |  |  |  |
| Text Book:                                                                                                          |                                                                                               |                           |                |  |  |  |  |  |
| 1.RamakantA.Gayakward, Op-amps and Linear Integrated Circuits, IV edition, Pearson                                  |                                                                                               |                           |                |  |  |  |  |  |
| Education, 200                                                                                                      | 3 / PHI.                                                                                      | :4. II . 1:4: Nor A       | 2002           |  |  |  |  |  |

D.RoyChoudhary, SheilB.Jani, Linear Integrated Circuits, II edition, New Age, 2003.
 M. Morris Mano, Digital Logic and Computer Design, Prentice Hall of India, 2002

| Course code                                                                                                                                                                                                  | Course Name                                 | L-T-P - Credits            | Year of<br>Introduction |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------|-------------------------|--|--|--|--|
| EC235                                                                                                                                                                                                        | ANALOG ELECTRONICS<br>LABORATORY            | 0-0-3:1                    | 2016                    |  |  |  |  |
| Prerequisite: EC209 Analog electronics                                                                                                                                                                       |                                             |                            |                         |  |  |  |  |
| Course Objectives                                                                                                                                                                                            |                                             |                            |                         |  |  |  |  |
| • To develop working knowledge on electronic devices and their performance characteristics                                                                                                                   |                                             |                            |                         |  |  |  |  |
| List of Exercises/Experiments : (Ten experiments are mandatory)                                                                                                                                              |                                             |                            |                         |  |  |  |  |
| 1. Study & Use of CRO: Measurement of current voltage, frequency and phase shift.                                                                                                                            |                                             |                            |                         |  |  |  |  |
| 2.Diode Clipping Circuits                                                                                                                                                                                    |                                             |                            |                         |  |  |  |  |
| 3. Clamping Circuits                                                                                                                                                                                         |                                             |                            |                         |  |  |  |  |
| 4. Rectifiers an                                                                                                                                                                                             | d filters with and without shunt capacitors | s- Characteristics full wa | ve rectifier-           |  |  |  |  |
| Ripple factor, H                                                                                                                                                                                             | Rectification efficiency, and % regulation  |                            |                         |  |  |  |  |
| 5. RC coupled                                                                                                                                                                                                | amplifier using BJT in CE configuration     | - Measurement of gain,     | input and output        |  |  |  |  |
| impedance and                                                                                                                                                                                                | impedance and frequency response            |                            |                         |  |  |  |  |
| 6. FET amplifie                                                                                                                                                                                              | er- Measurement of voltage gain, current    | gain, input and output in  | pedance                 |  |  |  |  |
| 7. Darlington E                                                                                                                                                                                              | Emitter Follower                            |                            |                         |  |  |  |  |
| 8. R.C. Phase S                                                                                                                                                                                              | Shift Oscillator using BJT or Op- Amp       |                            |                         |  |  |  |  |
| 9. Characteristi                                                                                                                                                                                             | cs of voltage regulators- Design and testin | ng of: a) simple zener vo  | ltage                   |  |  |  |  |
| regulator b) zer                                                                                                                                                                                             | ner regulator with emitter follower output  |                            |                         |  |  |  |  |
| 10. Series & Pa                                                                                                                                                                                              | arallel Resonance Circuits                  |                            | -                       |  |  |  |  |
| 11. Voltage Ser                                                                                                                                                                                              | ies Feedback Amplifier                      |                            |                         |  |  |  |  |
| 12. Class 'B' P                                                                                                                                                                                              | 12. Class 'B' Push-Pull Amplifier           |                            |                         |  |  |  |  |
| 13. Astable and monostable multivibrators using IC 555                                                                                                                                                       |                                             |                            |                         |  |  |  |  |
| 14. Design of PLL for given lock and capture ranges & frequency multiplication                                                                                                                               |                                             |                            |                         |  |  |  |  |
| 15. Applications using PLL                                                                                                                                                                                   |                                             |                            |                         |  |  |  |  |
| List of major equipments<br>CRO, Function generator, Regulated power supply, Dual power supply, Digital multimeter,<br>Ammeter, Voltmeter.                                                                   |                                             |                            |                         |  |  |  |  |
| Expected outcome.                                                                                                                                                                                            |                                             |                            |                         |  |  |  |  |
| • On completion of the course the student will be able to understand the working of electrical devices ,their performance characteristics and will be able to design circuits for various electronic devices |                                             |                            |                         |  |  |  |  |

# **Text Book:**

Allen Mottershead, Electronic Devices and Circuits: An Introduction, Prentice Hall of India