Course No.	Course Name	L-T-P - Credits	Year of Introduction
MA201	LINEAR ALGEBRA AND COMPLEX ANALYSIS	3-1-0-4	2016

Prerequisite: Nil

Course Objectives

COURSE OBJECTIVES

- To equip the students with methods of solving a general system of linear equations.
- To familiarize them with the concept of Eigen values and diagonalization of a matrix which have many applications in Engineering.
- To understand the basic theory of functions of a complex variable and conformal Transformations.

Syllabus

Analyticity of complex functions-Complex differentiation-Conformal mappings-Complex integration-System of linear equations-Eigen value problem

Expected outcome.

At the end of the course students will be able to

- (i) solve any given system of linear equations
- (ii) find the Eigen values of a matrix and how to diagonalize a matrix
- (iii) identify analytic functions and Harmonic functions.
- (iv)evaluate real definite Integrals as application of Residue Theorem
- (v) identify conformal mappings(vi) find regions that are mapped under certain Transformations

Text Book:

Erwin Kreyszig: Advanced Engineering Mathematics, 10th ed. Wiley

References

- 1.Dennis g Zill&Patric D Shanahan-A first Course in Complex Analysis with Applications-Jones&Bartlet Publishers
- 2.B. S. Grewal. Higher Engineering Mathematics, Khanna Publishers, New Delhi.
- 3.Lipschutz, Linear Algebra, 3e (Schaums Series) McGraw Hill Education India 2005
- 4. Complex variables introduction and applications-second edition-Mark. J. Owitz-Cambridge Publication

Course Plan				
Module	Contents	Hours	Sem. Exam Marks	
I	Complex differentiation Text 1[13.3,13.4] Limit, continuity and derivative of complex functions	3		
	Analytic Functions 2014	2		
	Cauchy–Riemann Equation(Proof of sufficient condition of analyticity & C R Equations in polar form not required)-Laplace's Equation	2		
	Harmonic functions, Harmonic Conjugate	2	15%	
	Conformal mapping: Text 1[17.1-17.4]			
	Geometry of Analytic functions Conformal Mapping,	1		
II	Mapping $w = z^2$ conformality of $w = e^z$.	2	15%	

	The mapping $w = z + \frac{1}{-}$				
	Z December 1				
	Properties of $w = \frac{1}{z}$	1			
	Circles and straight lines, extended complex plane, fixed points				
	Special linear fractional Transformations, Cross Ratio, Cross Ratio property-Mapping of disks and half planes	3			
	Conformal mapping by $w = \sin z \& w = \cos z$	3			
	(Assignment: Application of analytic functions in Engineering)	1			
	FIRST INTERNAL EXAMINATION				
	Complex Integration. Text 1[14.1-14.4] [15.4&16.1]	2			
	Definition Complex Line Integrals, First Evaluation Method, Second Evaluation Method	2			
	Cauchy's Integral Theorem(without proof), Independence of	2			
	path(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof)		15%		
Ш	Cauchy's Integral Formula- Derivatives of Analytic	2			
	Functions(without proof)Application of derivative of Analytical Functions				
	Taylor and Maclaurin series(without proof), Power series as Taylor				
	series, Practical methods(without proof)	2			
	Laurent's series (without proof)	2			
	Residue Integration Text 1 [16.2-16.4]		15%		
	Singularities, Zeros, Poles, Essential singularity, Zeros of analytic functions	2			
	- Carlotte	7			
	Residue Integration Method, Formulas for Residues, Several	4			
IV	singularities inside the contour Residue Theorem.				
	Evaluation of Real Integrals (i) Integrals of rational functions of	3			
	$\sin\theta$ and $\cos\theta$ (ii)Integrals of the type $\int_{-\infty}^{\infty} f(x)dx$ (Type I, Integrals				
	_∞				
	from 0 to ∞) (Assignment : Application of Complex integration in Engineering)				
	SECOND INTERNAL EXAMINATION				
			20%		
	Linear system of Equations Text 1(7.3-7.5)				
	Linear systems of Equations, Coefficient Matrix, Augmented Matrix	1			
V	Gauss Elimination and back substitution, Elementary row operations,				
	Row equivalent systems, Gauss elimination-Three possible cases,	5			
	Row Echelon form and Information from it.	3			

	Linear independence-rank of a matrix	2	
	Vector Space-Dimension-basis-vector space R ³		
	Solution of linear systems, Fundamental theorem of non-homogeneous linear systems (Without proof)-Homogeneous linear systems (Theory only	1	
	Matrix Eigen value Problem Text 1.(8.1,8.3 &8.4)		20%
VI	Determination of Eigen values and Eigen vectors-Eigen space	3	
	Symmetric, Skew Symmetric and Orthogonal matrices –simple properties (without proof)	2	
	Basis of Eigen vectors- Similar matrices Diagonalization of a matrix- Quadratic forms- Principal axis theorem(without proof)	4	
	(Assignment-Some applications of Eigen values(8.2))		
END SEMESTER EXAM			

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

Any two questions from each part have to be answered.