
1

CST305 – SYSTEM SOFTWARE

UNIT I INTRODUCTION 8

System software and machine architecture – The Simplified Instructional Computer (SIC)

- Machine architecture - Data and instruction formats - addressing modes - instruction

sets - I/O and programming.

UNIT II ASSEMBLERS 10

Basic assembler functions - A simple SIC assembler – Assembler algorithm and data

structures - Machine dependent assembler features - Instruction formats and addressing

modes – Program relocation - Machine independent assembler features - Literals –

Symbol-defining statements – Expressions - One pass assemblers and Multi pass

assemblers - Implementation example - MASM assembler.

UNIT III LOADERS AND LINKERS 9

Basic loader functions - Design of an Absolute Loader – A Simple Bootstrap Loader -

Machine dependent loader features - Relocation – Program Linking – Algorithm and

Data Structures for Linking Loader - Machine-independent loader features - Automatic

Library Search – Loader Options - Loader design options - Linkage Editors – Dynamic

Linking – Bootstrap Loaders - Implementation example - MSDOS linker.

UNIT IV MACRO PROCESSORS 9

Basic macro processor functions - Macro Definition and Expansion – Macro Processor

Algorithm and data structures - Machine-independent macro processor features -

Concatenation of Macro Parameters – Generation of Unique Labels – Conditional Macro

Expansion – Keyword Macro Parameters-Macro within Macro-Implementation example -

MASM Macro Processor – ANSI C Macro language.

UNIT V SYSTEM SOFTWARE TOOLS 9

Text editors - Overview of the Editing Process - User Interface – Editor Structure. -

Interactive debugging systems - Debugging functions and capabilities – Relationship with

other parts of the system – User-Interface Criteria.

TEXT BOOK 1. Leland L. Beck, “System Software – An Introduction to Systems

Programming”, 3rd Edition, Pearson Education Asia, 2006.

REFERENCES

1. D. M. Dhamdhere, “Systems Programming and Operating Systems”, Second

Revised Edition, Tata McGraw-Hill, 2000.

2. John J. Donovan “Systems Programming”, Tata McGraw-Hill Edition, 2000.

2

UNIT I

INTRODUCTION TO SYSTEM SOFTWARE AND

MACHINE STRUCTURE

 SYSTEM SOFTWARE

 System software consists of a variety of programs that support the operation of a

computer.

 It is a set of programs to perform a variety of system functions as file editing,

resource management, I/O management and storage management.

 The characteristic in which system software differs from application software is

machine dependency.

 An application program is primarily concerned with the solution of some

problem, using the computer as a tool.

 System programs on the other hand are intended to support the operation and use

of the computer itself, rather than any particular application.

 For this reason, they are usually related to the architecture of the machine on

which they are run.

 For example, assemblers translate mnemonic instructions into machine code. The

instruction formats, addressing modes are of direct concern in assembler design.

 There are some aspects of system software that do not directly depend upon the

type of computing system being supported. These are known as machine-

independent features.

 For example, the general design and logic of an assembler is basically the same

on most computers.

TYPES OF SYSTEM SOFTWARE:

1. Operating system

2. Language translators

a. Compilers

b. Interpreters

c. Assemblers

d. Preprocessors

3. Loaders

4. Linkers

5. Macro processors

OPERATING SYSTEM

 It is the most important system program that act as an interface between the users

and the system. It makes the computer easier to use.

3

Language

Translator

Compiler

 It provides an interface that is more user-friendly than the underlying hardware.

 The functions of OS are:

1. Process management
2. Memory management

3. Resource management

4. I/O operations

5. Data management

6. Providing security to user’s job.

LANGUAGE TRANSLATORS

It is the program that takes an input program in one language and produces an output in

another language.

Source Program Object Program

Compilers

 A compiler is a language program that translates programs written in any high-

level language into its equivalent machine language program.

 It bridges the semantic gap between a programming language domain and the

execution domain.

 Two aspects of compilation are:

o Generate code to increment meaning of a source program in the execution

domain.

o Provide diagnostics for violation of programming language, semantics in a

source program.

 The program instructions are taken as a whole.

High level language Machine language program

Interpreters:

 It is a translator program that translates a statement of high-level language to

machine language and executes it immediately. The program instructions are

taken line by line.

 The interpreter reads the source program and stores it in memory.

4

 During interpretation, it takes a source statement, determines its meaning and

performs actions which increments it. This includes computational and I/O

actions.

 Program counter (PC) indicates which statement of the source program is to be

interpreted next. This statement would be subjected to the interpretation cycle.

 The interpretation cycle consists of the following steps:

o Fetch the statement.

o Analyze the statement and determine its meaning.

o Execute the meaning of the statement.

 The following are the characteristics of interpretation:

o The source program is retained in the source form itself, no target program

exists.

o A statement is analyzed during the interpretation.

Interpreter Memory

Assemblers:

 Programmers found it difficult to write or red programs in machine language. In a

quest for a convenient language, they began to use a mnemonic (symbol) for each

machine instructions which would subsequently be translated into machine

language.

 Such a mnemonic language is called Assembly language.

 Programs known as Assemblers are written to automate the translation of

assembly language into machine language.

Assembly language program

 Fundamental functions:

Machine language program

1. Translating mnemonic operation codes to their machine language equivalents.
2. Assigning machine addresses to symbolic tables used by the programmers.

Assembler

Source

Program Program

counter

5

 THE SIMPLIFIED INSTRUCTIONAL COMPUTER (SIC):

It is similar to a typical microcomputer. It comes in two versions:

 The standard model

 XE version

SIC Machine Structure:

Memory:

 It consists of bytes(8 bits) ,words (24 bits which are consecutive 3 bytes)

addressed by the location of their lowest numbered byte.

 There are totally 32,768 bytes in memory.

Registers:

There are 5 registers namely

1. Accumulator (A)

2. Index Register(X)

3. Linkage Register(L)

4. Program Counter(PC)

5. Status Word(SW).

 Accumulator is a special purpose register used for arithmetic operations.

 Index register is used for addressing.

 Linkage register stores the return address of the jump of subroutine instructions

(JSUB).

 Program counter contains the address of the current instructions being executed.

 Status word contains a variety of information including the condition code.

Data formats:

 Integers are stored as 24-bit binary numbers: 2’s complement representation is

used for negative values characters are stored using their 8 bit ASCII codes.

 They do not support floating – point data items.

Instruction formats:

All machine instructions are of 24-bits wide

Opcode (8) X (1) Address (15)

 X-flag bit that is used to indicate indexed-addressing mode.

Addressing modes:

6

 Two types of addressing are available namely,

1. Direct addressing mode
2. Indexed addressing mode or indirect addressing mode

Mode Indication Target Address calculation

Direct X=0 TA=Address

Indexe

d

X=1 TA=Address + (X)

 Where(x) represents the contents of the index register(x)

Instruction set:

It includes instructions like:

1. Data movement instruction

Ex: LDA, LDX, STA, STX.

2. Arithmetic operating instructions

Ex: ADD, SUB, MUL, DIB.

This involves register A and a word in memory, with the result being left in the

register.

3. Branching instructions

Ex: JLT, JEQ, TGT.

4. Subroutine linkage instructions

Ex: JSUB, RSUB.

Input and Output:

 I/O is performed by transferring one byte at a time to or from the rightmost 8 bits

of register A.

 Each device is assigned a unique 8-bit code.

 There are 3 I/O instructions,

1) The Test Device (TD) instructions tests whether the addressed device is

ready to send or receive a byte of data.

2) A program must wait until the device is ready, and then execute a Read

Data (RD) or Write Data (WD).

3) The sequence must be repeated for each byte of data to be read or written.

 SIC/XE ARCHITECTURE & SYSTEM SPECIFICATION

7

Memory:

 1 word = 24 bits (3 8-bit bytes)

 Total (SIC/XE) = 220 (1,048,576) bytes (1Mbyte)

Registers:

 10 x 24 bit registers

MNEMONIC Register Purpose

A 0 Accumulator

X 1 Index register

L 2 Linkage register (JSUB/RSUB)

B 3 Base register

S 4 General register

T 5 General register

F 6 Floating Point Accumulator (48 bits)

PC 8 Program Counter (PC)

SW 9 Status Word (includes Condition Code, CC)

Data Format:

 Integers are stored in 24 bit, 2's complement format

 Characters are stored in 8-bit ASCII format

 Floating point is stored in 48 bit signed-exponent-fraction format:

s exponent {11} fraction {36}

 The fraction is represented as a 36 bit number and has value between 0 and 1.

 The exponent is represented as a 11 bit unsigned binary number between 0 and

2047.

 The sign of the floating point number is indicated by s : 0=positive, 1=negative.

 Therefore, the absolute floating point number value is: f*2(e-1024)

Instruction Format:

 There are 4 different instruction formats available:

Format 1 (1 byte):

 op {8}

8

Format 2 (2 bytes):

op {8} r1 {4} r2 {4}

Format 3 (3 bytes):

op {6} n i x b p e displacement {12}

Format 4 (4 bytes):

op {6} n i x b p e address {20}

Formats 3 & 4 introduce addressing mode flag bits:

 n=0 & i=1

Immediate addressing - TA is used as an operand value (no memory reference)

 n=1 & i=0

Indirect addressing - word at TA (in memory) is fetched & used as an address to

fetch the operand from

 n=0 & i=0

Simple addressing TA is the location of the operand

 n=1 & i=1

Simple addressing same as n=0 & i=0

Flag x:

x=1 Indexed addressing add contents of X register to TA calculation

Flag b & p (Format 3 only):

 b=0 & p=0

Direct addressing displacement/address field containsTA (Format 4 always uses

direct addressing)

 b=0 & p=1

PC relative addressing - TA=(PC)+disp (-2048<=disp<=2047)*

 b=1 & p=0

Base relative addressing - TA=(B)+disp (0<=disp<=4095)**

Flag e:
e=0 use Format 3

e=1 use Format 4

9

Instructions:

SIC provides 26 instructions, SIC/XE provides an additional 33 instructions (59 total)

SIC/XE has 9 categories of instructions:

 Load/store registers (LDA, LDX, LDCH, STA, STX, STCH, etc.)

 integer arithmetic operations (ADD, SUB, MUL, DIV) these will use register A

and a word in memory, results are placed into register A

 compare (COMP) compares contents of register A with a word in memory and

sets CC (Condition Code) to <, >, or =

 conditional jumps (JLT, JEQ, JGT) - jumps according to setting of CC

 subroutine linkage (JSUB, RSUB) - jumps into/returns from subroutine using

register L

 input & output control (RD, WD, TD) - see next section

 floating point arithmetic operations (ADDF, SUBF, MULF, DIVF)

 register manipulation, operands-from-registers, and register-to-register arithmetics

(RMO, RSUB, COMPR, SHIFTR, SHIFTL, ADDR, SUBR, MULR, DIVR, etc)

Input and Output (I/O):

 28 (256) I/O devices may be attached, each has its own unique 8-bit address

 1 byte of data will be transferred to/from the rightmost 8 bits of register A

Three I/O instructions are provided:

 RD Read Data from I/O device into A

 WD Write data to I/O device from A

 TD Test Device determines if addressed I/O device is ready to send/receive a byte

of data. The CC (Condition Code) gets set with results from this test:

< device is ready to send/receive
= device isn't ready

SIC/XE Has capability for programmed I/O (I/O device may input/output data while CPU

does other work) - 3 additional instructions are provided:

 SIO Start I/O

 HIO Halt I/O

 TIO Test I/O

 SIC, SIC/XE ADDRESSING MODES

Addressing

Type

Flag Bits

Notation
Calculation of

Target Address

Operand

Notes
n i x b p e

10

Simple 1 1 0 0 0 0 op c disp (TA)
Direct-addressing

Instruction

1 1 0 0 0 1 +op m addr (TA)

Format 4 & Direct-

addressing Instruction

1

1

0

0

1

0

op m

(PC) + disp

(TA)

Assembler selects

either base-relative or

program-counter

relative mode

1

1

0

1

0

0

op m

(B) + disp

(TA)

Assembler selects

either base-relative or

program-counter

relative mode

1 1 1 0 0 0 op c,X disp + (X) (TA)
Direct-addressing

Instruction

1 1 1 0 0 1 +op m,X addr + (X) (TA)
Format 4 & Direct-

addressing Instruction

1

1

1

0

1

0

op m,X

(PC) + disp +

(X)

(TA)

Assembler selects

either base-relative or

program-counter

relative mode

1

1

1

1

0

0

op m,X

(B) + disp + (X)

(TA)

Assembler selects

either base-relative or

program-counter

relative mode

0

0

0

-

-

-

op m

b/p/e/disp

(TA)

Direct-addressing

Instruction; SIC

compatible format.

0

0

1

-

-

-

op m,X

b/p/e/disp + (X)

(TA)

Direct-addressing

Instruction; SIC

compatible format.

Indirect 1 0 0 0 0 0 op @c disp ((TA))
Direct-addressing

Instruction

1 0 0 0 0 1 +op @m addr ((TA))

Format 4 & Direct-

addressing Instruction

1

0

0

0

1

0

op @m

(PC) + disp

((TA))

Assembler selects

either base-relative or

program-counter

relative mode

1 0 0 1 0 0 op @m (B) + disp ((TA)) Assembler selects

11

 either base-relative or

program-counter

relative mode

Immediate 0 1 0 0 0 0 op #c disp TA
Direct-addressing

Instruction

0 1 0 0 0 1 op #m addr TA

Format 4 & Direct-

addressing Instruction

0

1

0

0

1

0

op #m

(PC) + disp

TA

Assembler selects

either base-relative or

program-counter

relative mode

0

1

0

1

0

0

op #m

(B) + disp

TA

Assembler selects

either base-relative or

program-counter

relative mode

12

UNIT II

ASSEMBLERS

 BASIC ASSEMBLER FUNCTIONS

Fundamental functions of an assembler:

 Translating mnemonic operation codes to their machine language equivalents.

 Assigning machine addresses to symbolic labels used by the programmer.

Figure 2.1: Assembler language program for basic SIC version

13

Indexed addressing is indicated by adding the modifier “ X” following the operand.

Lines beginning with “.” contain comments only.

The following assembler directives are used:

 START: Specify name and starting address for the program.

 END : Indicate the end of the source program and specify the first executable

instruction in the program.

 BYTE: Generate character or hexadecimal constant, occupying as many bytes as

needed to represent the constant.

 WORD: Generate one- word integer constant.

 RESB: Reserve the indicated number of bytes for a data area.

 RESW: Reserve the indicated number of words for a data area.

The program contains a main routine that reads records from an input device(code F1)

and copies them to an output device(code 05).

The main routine calls subroutines:

 RDREC – To read a record into a buffer.

14

 WRREC – To write the record from the buffer to the output device.

The end of each record is marked with a null character (hexadecimal 00).

 A Simple SIC Assembler

The translation of source program to object code requires the following functions:

1. Convert mnemonic operation codes to their machine language equivalents. Eg:

Translate STL to 14 (line 10).

2. Convert symbolic operands to their equivalent machine addresses. Eg:Translate

RETADR to 1033 (line 10).

3. Build the machine instructions in the proper format.

4. Convert the data constants specified in the source program into their internal

machine representations. Eg: Translate EOF to 454F46(line 80).

5. Write the object program and the assembly listing.

All fuctions except function 2 can be established by sequential processing of source

program one line at a time.

Consider the statement

10 1000 FIRST STL RETADR 141033

This instruction contains a forward reference (i.e.) a reference to a label (RETADR) that

is defined later in the program. It is unable to process this line because the address that

will be assigned to RETADR is not known. Hence most assemblers make two passes

over the source program where the second pass does the actual translation.

The assembler must also process statements called assembler directives or pseudo

instructions which are not translated into machine instructions. Instead they provide

instructions to the assembler itself.

Examples: RESB and RESW instruct the assembler to reserve memory locations without

generating data values.

The assembler must write the generated object code onto some output device. This object

program will later be loaded into memory for execution.

Object program format contains three types of records:

 Header record: Contains the program name, starting address and length.

 Text record: Contains the machine code and data of the program.

 End record: Marks the end of the object program and specifies the address in the

program where execution is to begin.

15

Record format is as follows:

Header record:

Col. 1 H

Col.2-7 Program name

Col.8-13 Starting address of object program

Col.14-19 Length of object program in bytes

Text record:

Col.1 T

Col.2-7 Starting address for object code in this record

Col.8-9 Length of object code in this record in bytes

Col 10-69 Object code, represented in hexadecimal (2 columns per byte of object

code)

End record:

Col.1 E

Col.2-7 Address of first executable instruction in object program.

Functions of the two passes of assembler:

Pass 1 (Define symbols)

1. Assign addresses to all statements in the program.

2. Save the addresses assigned to all labels for use in Pass 2.

3. Perform some processing of assembler directives.

Pass 2 (Assemble instructions and generate object programs)

16

1. Assemble instructions (translating operation codes and looking up addresses).

2. Generate data values defined by BYTE,WORD etc.

3. Perform processing of assembler directives not done in Pass 1.

4. Write the object program and the assembly listing.

 Assembler Algorithm and Data Structures

Assembler uses two major internal data structures:

1. Operation Code Table (OPTAB) : Used to lookup mnemonic operation codes

and translate them into their machine language equivalents.

2. Symbol Table (SYMTAB) : Used to store values(Addresses) assigned to labels.

Location Counter (LOCCTR) :

 Variable used to help in the assignment of addresses.

 It is initialized to the beginning address specified in the START statement.

 After each source statement is processed, the length of the assembled instruction

or data area is added to LOCCTR.

 Whenever a label is reached in the source program, the current value of LOCCTR

gives the address to be associated with that label.

Operation Code Table (OPTAB) :

 Contains the mnemonic operation and its machine language equivalent.

 Also contains information about instruction format and length.

 In Pass 1, OPTAB is used to lookup and validate operation codes in the source

program.

 In Pass 2, it is used to translate the operation codes to machine language program.

 During Pass 2, the information in OPTAB tells which instruction format to use in

assembling the instruction and any peculiarities of the object code instruction.

Symbol Table (SYMTAB) :

 Includes the name and value for each label in the source program and flags to

indicate error conditions.

 During Pass 1 of the assembler, labels are entered into SYMTAB as they are

encountered in the source program along with their assigned addresses.

 During Pass 2, symbols used as operands are looked up in SYMTAB to obtain the

addresses to be inserted in the assembled instructions.

Pass 1 usually writes an intermediate file that contains each source statement together

with its assigned address, error indicators. This file is used as the input to Pass 2. This

copy of the source program can also be used to retain the results of certain operations that

17

may be performed during Pass 1 such as scanning the operand field for symbols and

addressing flags, so these need not be performed again during Pass 2.

 MACHINE DEPENDENT ASSEMBLER FEATURES

Consider the design and implementation of an assembler for SIC/XE version.

18

Indirect addressing is indicated by adding the prefix @ to the operand (line70).

Immediate operands are denoted with the prefix # (lines 25, 55,133). Instructions that

refer to memory are normally assembled using either the program counter relative or base

counter relative mode.

The assembler directive BASE (line 13) is used in conjunction with base relative

addressing. The four byte extended instruction format is specified with the prefix + added

to the operation code in the source statement.

Register-to-register instructions are used wherever possible. For example the statement

on line 150 is changed from COMP ZERO to COMPR A,S. Immediate and indirect

addressing have also been used as much as possible.

Register-to-register instructions are faster than the corresponding register-to-memory

operations because they are shorter and do not require another memory reference.

While using immediate addressing, the operand is already present as part of the

instruction and need not be fetched from anywhere. The use of indirect addressing often

avoids the need for another instruction.

19

 Instruction Formats and Addressing Modes

 SIC/XE

o PC-relative or Base-relative addressing: op m

o Indirect addressing: op @m

o Immediate addressing: op #c

o Extended format: +op m

o Index addressing: op m,x

o register-to-register instructions

o larger memory -> multi-programming (program allocation)

Translation

 Register translation

o register name (A, X, L, B, S, T, F, PC, SW) and their values (0,1, 2, 3, 4,

5, 6, 8, 9)

o preloaded in SYMTAB

 Address translation

o Most register-memory instructions use program counter relative or base

relative addressing

o Format 3: 12-bit address field

▪ base-relative: 0~4095

▪ pc-relative: -2048~2047

o Format 4: 20-bit address field

 Program Relocation

The need for program relocation

 It is desirable to load and run several programs at the same time.

 The system must be able to load programs into memory wherever there is room.

 The exact starting address of the program is not known until load time.

Absolute Program

 Program with starting address specified at assembly time

 The address may be invalid if the program is loaded into somewhere else.

 Example:

20

Example: Program Relocation

 The only parts of the program that require modification at load time are those that

specify direct addresses.

 The rest of the instructions need not be modified.

o Not a memory address (immediate addressing)

o PC-relative, Base-relative

 From the object program, it is not possible to distinguish the address and constant.

o The assembler must keep some information to tell the loader.

o The object program that contains the modification record is called a

relocatable program.

The way to solve the relocation problem

 For an address label, its address is assigned relative to the start of the

program(START 0)

 Produce a Modification record to store the starting location and the length of the

address

 field to be modified.

21

 The command for the loader must also be a part of the object program.

Modification record

 One modification record for each address to be modified

 The length is stored in half-bytes (4 bits)

 The starting location is the location of the byte containing the leftmost bits of the

address field to be modified.

 If the field contains an odd number of half-bytes, the starting location begins in

the middle of the first byte.

Relocatable Object Program

 MACHINE INDEPENDENT ASSEMBLER FEATURES

 Literals

 The programmer writes the value of a constant operand as a part of the instruction

that uses it. This avoids having to define the constant elsewhere in the program

and make a label for it.

 Such an operand is called a Literal because the value is literally in the instruction.

22

 Consider the following example

 It is convenient to write the value of a constant operand as a part of instruction.

 A literal is identified with the prefix =, followed by a specification of the literal

value.

 Example:

Literals vs. Immediate Operands

 Literals

The assembler generates the specified value as a constant at some other memory

location.

 Immediate Operands

23

The operand value is assembled as part of the machine instruction

 We can have literals in SIC, but immediate operand is only valid in SIC/XE.

Literal Pools

 Normally literals are placed into a pool at the end of the program

 In some cases, it is desirable to place literals into a pool at some other location in

the object program

 Assembler directive LTORG

o When the assembler encounters a LTORG statement, it generates a literal

pool (containing all literal operands used since previous LTORG)

 Reason: keep the literal operand close to the instruction

o Otherwise PC-relative addressing may not be allowed

Duplicate literals

 The same literal used more than once in the program

o Only one copy of the specified value needs to be stored

o For example, =X’05’

 Inorder to recognize the duplicate literals

o Compare the character strings defining them

▪ Easier to implement, but has potential problem

▪ e.g. =X’05’

o Compare the generated data value

▪ Better, but will increase the complexity of the

▪ assembler

▪ e.g. =C’EOF’ and =X’454F46’

Problem of duplicate-literal recognition

 ‘*’ denotes a literal refer to the current value of program counter

o BUFEND EQU *

 There may be some literals that have the same name, but different values

o BASE *

o LDB =* (#LENGTH)

 The literal =* repeatedly used in the program has the same name, but different

values

 The literal “=*” represents an “address” in the program, so the assembler must

generate the appropriate “Modification records”.

Literal table - LITTAB

24

 Content

o Literal name

o Operand value and length

o Address

 LITTAB is often organized as a hash table, using the literal name or value as the

key.

Implementation of Literals

Pass 1

 Build LITTAB with literal name, operand value and length, leaving the address

unassigned

 When LTORG or END statement is encountered, assign an address to each literal

not yet assigned an address

o updated to reflect the number of bytes occupied by each literal

Pass 2

 Search LITTAB for each literal operand encountered

 Generate data values using BYTE or WORD statements

 Generate Modification record for literals that represent an address in the program

SYMTAB & LITTAB

 Symbol-Defining Statements

25

 Most assemblers provide an assembler directive that allows the programmer to

define symbols and specify their values.

Assembler directive used is EQU.

 Syntax: symbol EQU value

 Used to improve the program readability, avoid using magic numbers, make it

easier to find and change constant values

 Replace +LDT #4096 with

MAXLEN EQU 4096

+LDT #MAXLEN

 Define mnemonic names for registers.

A EQU 0 RMO A,X

X EQU 1

 Expression is allowed

MAXLEN EQU BUFEND-BUFFER

Assembler directive ORG

 Allow the assembler to reset the PC to values

o Syntax: ORG value

 When ORG is encountered, the assembler resets its LOCCTR to the specified

value.

 ORG will affect the values of all labels defined until the next ORG.

 If the previous value of LOCCTR can be automatically remembered, we can

return to the normal use of LOCCTR by simply writing

o ORG

Example: using ORG

 If ORG statements are used

 We can fetch the VALUE field by

LDA VALUE,X

X = 0, 11, 22, … for each entry

Forward-Reference Problem

26

 Forward reference is not allowed for either EQU or ORG.

 All terms in the value field must have been defined previously in the program.

 The reason is that all symbols must have been defined during Pass 1 in a two-pass

assembler.

 Allowed:

ALPHA
BETA

RESW
EQU

1
ALPHA

 Not Allowed:

BETA EQU ALPHA
ALPHA RESW 1

 Expressions

 The assemblers allow “the use of expressions as operand”

 The assembler evaluates the expressions and produces a single operand address or

value.

 Expressions consist of

Operator

o +,-,*,/ (division is usually defined to produce an integer result)

Individual terms

o Constants

o User-defined symbols

o Special terms, e.g., *, the current value of LOCCTR

 Examples

MAXLEN EQU BUFEND-BUFFER

STAB RESB (6+3+2)*MAXENTRIES

Relocation Problem in Expressions

 Values of terms can be

o Absolute (independent of program location)

▪ constants

o Relative (to the beginning of the program)

▪ Address labels

▪ * (value of LOCCTR)

 Expressions can be

 Absolute

o Only absolute terms.

o MAXLEN EQU 1000

 Relative terms in pairs with opposite signs for each pair.

MAXLEN EQU BUFEND-BUFFER

 Relative

27

All the relative terms except one can be paired as described in “absolute”.

The remaining unpaired relative term must have a positive sign.

STAB EQU OPTAB + (BUFEND – BUFFER)

Restriction of Relative Expressions

 No relative terms may enter into a multiplication or division operation

o 3 * BUFFER

 Expressions that do not meet the conditions of either “absolute” or “relative”

should be flagged as errors.

o BUFEND + BUFFER

o 100 – BUFFER

Handling Relative Symbols in SYMTAB

 To determine the type of an expression, we must keep track of the types of all

symbols defined in the program.

 We need a “flag” in the SYMTAB for indication.

 Program Blocks
 Allow the generated machine instructions and data to appear in the object

program in a different order

 Separating blocks for storing code, data, stack, and larger data block

 Program blocks versus. Control sections

o Program blocks

▪ Segments of code that are rearranged within a single object

program unit.

o Control sections

▪ Segments of code that are translated into independent object

program units.

 Assembler rearranges these segments to gather together the pieces of each block

and assign address.

 Separate the program into blocks in a particular order

28

 Large buffer area is moved to the end of the object program

 Program readability is better if data areas are placed in the source program close

to the statements that reference them.

Assembler directive: USE

 USE [blockname]

 At the beginning, statements are assumed to be part of the unnamed (default)

block

 If no USE statements are included, the entire program belongs to this single block

 Each program block may actually contain several separate segments of the source

program

Example

29

Three blocks are used

 default: executable instructions.

 CDATA: all data areas that are less in length.

 CBLKS: all data areas that consists of larger blocks of memory.

30

Rearrange Codes into Program Blocks

Pass 1

 A separate location counter for each program block

o Save and restore LOCCTR when switching between blocks

o At the beginning of a block, LOCCTR is set to 0.

 Assign each label an address relative to the start of the block

 Store the block name or number in the SYMTAB along with the assigned relative

address of the label

 Indicate the block length as the latest value of LOCCTR for each block at the end

of Pass1

 Assign to each block a starting address in the object program by concatenating the

program blocks in a particular order

Pass 2

 Calculate the address for each symbol relative to the start of the object program

by adding

o The location of the symbol relative to the start of its block

o The starting address of this block

Program Blocks Loaded in Memory

31

Object Program

 It is not necessary to physically rearrange the generated code in the object

program

 The assembler just simply inserts the proper load address in each Text record.

 The loader will load these codes into correct place

 Control Sections and Program Linking

Control sections

 can be loaded and relocated independently of the other

 are most often used for subroutines or other logical subdivisions of a program

 the programmer can assemble, load, and manipulate each of these control sections

separately

 because of this, there should be some means for linking control sections together

 assembler directive: CSECT

secname CSECT

 separate location counter for each control section

External Definition and Reference

 Instructions in one control section may need to refer to instructions or data located

in another section

 External definition

o EXTDEF name [, name]

o EXTDEF names symbols that are defined in this control section and may

be used by other sections

o Ex: EXTDEF BUFFER, BUFEND, LENGTH

 External reference

o EXTREF name [,name]

o EXTREF names symbols that are used in this control section and are

defined elsewhere

o Ex: EXTREF RDREC, WRREC

 To reference an external symbol, extended format instruction is needed.

32

33

External Reference Handling

Case 1

 15 0003 CLOOP +JSUB RDREC 4B100000

 The operand RDREC is an external reference.

 The assembler

o Has no idea where RDREC is

o Inserts an address of zero

o Can only use extended format to provide enough room (that is, relative

addressing for external reference is invalid)

 The assembler generates information for each external reference that will allow

the loader to perform the required linking.

Case 2

 190 0028 MAXLEN WORD BUFEND-BUFFER

000000

 There are two external references in the expression, BUFEND and BUFFER.

 The assembler

o inserts a value of zero

o passes information to the loader

▪ Add to this data area the address of BUFEND

▪ Subtract from this data area the address of BUFFER

Case 3

 On line 107, BUFEND and BUFFER are defined in the same control section and

the expression can be calculated immediately.

 107 1000 MAXLEN EQU BUFEND-BUFFER

34

Records for Object Program

 The assembler must include information in the object program that will cause the

loader to insert proper values where they are required.

 Define record (EXTDEF)

Col. 1 D

Col. 2-7 Name of external symbol defined in this control section

Col. 8-13 Relative address within this control section (hexadeccimal)

Col.14-73 Repeat information in Col. 2-13 for other external symbols

 Refer record (EXTREF)

Col. 1 R

Col. 2-7 Name of external symbol referred to in this control section

Col. 8-73 Name of other external reference symbols

 Modification record

Col. 1 M

Col. 2-7 Starting address of the field to be modified (hexiadecimal)
Col. 8-9 Length of the field to be modified, in half-bytes (hexadeccimal)

Col.11-16 External symbol whose value is to be added to or subtracted from the

indicated field

 Control section name is automatically an external symbol, i.e. it is available for

use in Modification records.

Object Program

35

Expressions in Multiple Control Sections

 Extended restriction

o Both terms in each pair of an expression must be within the same control

section

o Legal: BUFEND-BUFFER

o Illegal: RDREC-COPY

 How to enforce this restriction

o When an expression involves external references, the assembler cannot

determine whether or not the expression is legal.

o The assembler evaluates all of the terms it can, combines these to form an

initial expression value, and generates Modification records.

o The loader checks the expression for errors and finishes the evaluation.

 ASSEMBLER DESIGN

The assembler design deals with

 Two-pass assembler with overlay structure

 One-pass assemblers

 Multi-pass assemblers

 One-pass assembler

Load-and-Go Assembler

36

 Load-and-go assembler generates their object code in memory for immediate

execution.

 No object program is written out, no loader is needed.

 It is useful in a system with frequent program development and testing

 The efficiency of the assembly process is an important consideration.

 Programs are re-assembled nearly every time they are run; efficiency of the

assembly process is an important consideration.

One-Pass Assemblers

 Scenario for one-pass assemblers

o Generate their object code in memory for immediate execution – load-

and-go assembler

o External storage for the intermediate file between two passes is slow or is

inconvenient to use

 Main problem - Forward references

o Data items

o Labels on instructions

 Solution

o Require that all areas be defined before they are referenced.

o It is possible, although inconvenient, to do so for data items.

o Forward jump to instruction items cannot be easily eliminated.

▪ Insert (label, address_to_be_modified) to SYMTAB

▪ Usually, address_to_be_modified is stored in a linked-list

Sample program for a one-pass assembler

37

Forward Reference in One-pass Assembler

 Omits the operand address if the symbol has not yet been defined.

 Enters this undefined symbol into SYMTAB and indicates that it is undefined.

 Adds the address of this operand address to a list of forward references associated

with the SYMTAB entry.

 When the definition for the symbol is encountered, scans the reference list and

inserts the address.

 At the end of the program, reports the error if there are still SYMTAB entries

indicated undefined symbols.

 For Load-and-Go assembler

o Search SYMTAB for the symbol named in the END statement and jumps

to this location to begin execution if there is no error.

Object Code in Memory and SYMTAB

38

After scanning line 40 of the above program

After scanning line 160 of the above program

If One-Pass Assemblers need to produce object codes

39

 If the operand contains an undefined symbol, use 0 as the address and write the

Text record to the object program.

 Forward references are entered into lists as in the load-and-go assembler.

 When the definition of a symbol is encountered, the assembler generates another

Text record with the correct operand address of each entry in the reference list.

 When loaded, the incorrect address 0 will be updated by the latter Text record

containing the symbol definition.

Object code generated by one-pass assembler

 Two-pass assembler with overlay structure

 Most assemblers divide the processing of the source program into two passes.

 The internal tables and subroutines that are used only during Pass 1 are no longer

needed after the first pass is completed.

 The routines and tables for Pass 1 and Pass 2 are never required at the same time.

 There are certain tables (SYMTAB) and certain processing subroutines (searching

SYMTAB) that are used by both passes.

 Since Pass 1 and Pass 2 segments are never needed at the same time, they can

occupy the same locations in memory during execution of the assembler.

 Initially the Root and Pass 1 segments are loaded into memory.

 The assembler then makes the first pass over the program being assembled.

 At the end of the Pass1, the Pass 2 segment is loaded, replacing the Pass 1

segment.

 The assembler then makes its second pass of the source program and terminates.

40

 The assembler needs much less memory to run in this way than it would be if both

Pass 1 and Pass 2 were loaded at the same time.

 A program that is designed to execute in this way is called an Overlay program

because some of its segments overlay others during execution.

 Multi-Pass Assemblers

 For a two pass assembler, forward references in symbol definition are not

allowed:
ALPHA EQU BETA

BETA EQU DELTA
DELTA RESW 1

 The symbol BETA cannot be assigned a value when it is encountered during Pass

1 because DELTA has not yet been defined.

 Hence ALPHA cannot be evaluated during Pass 2.

 Symbol definition must be completed in pass 1.

 Prohibiting forward references in symbol definition is not a serious

inconvenience.

 Forward references tend to create difficulty for a person reading the program.

 The general solution for forward references is a multi-pass assembler that can

make as many passes as are needed to process the definitions of symbols.

 It is not necessary for such an assembler to make more than 2 passes over the

entire program.

 The portions of the program that involve forward references in symbol definition

are saved during Pass 1.

 Additional passes through these stored definitions are made as the assembly

progresses.

 This process is followed by a normal Pass 2.

41

Implementation

 For a forward reference in symbol definition, we store in the SYMTAB:

o The symbol name

o The defining expression

o The number of undefined symbols in the defining expression

 The undefined symbol (marked with a flag *) associated with a list of symbols

depend on this undefined symbol.

 When a symbol is defined, we can recursively evaluate the symbol expressions

depending on the newly defined symbol.

Example of Multi-pass assembler

Consider the symbol table entries from Pass 1 processing of the statement.

HALFS2 EQU MAXLEN/2

 Since MAXLEN has not yet been defined, no value for HALFS2 can be

computed.

 The defining expression for HALFS2 is stored in the symbol table in place of its

value.

 The entry &1 indicates that 1 symbol in the defining expression undefined.

 SYMTAB simply contain a pointer to the defining expression.

42

 The symbol MAXLEN is also entered in the symbol table, with the flag *

identifying it as undefined.

 Associated with this entry is a list of the symbols whose values depend on

MAXLEN.

43

UNIT III

LOADERS AND LINKERS

INTRODUCTION

 Loader is a system program that performs the loading function.

 Many loaders also support relocation and linking.

 Some systems have a linker (linkage editor) to perform the linking operations and

a separate loader to handle relocation and loading.

 One system loader or linker can be used regardless of the original source

programming language.

 Loading Brings the object program into memory for execution.

 Relocation Modifies the object program so that it can be loaded at an address

different from the location originally specified.

 Linking Combines two or more separate object programs and supplies the

information needed to allow references between them.

 BASIC LOADER FUNCTIONS

Fundamental functions of a loader:

1. Bringing an object program into memory.

2. Starting its execution.

 Design of an Absolute Loader

For a simple absolute loader, all functions are accomplished in a single pass as follows:

1) The Header record of object programs is checked to verify that the correct program has

been presented for loading.

2) As each Text record is read, the object code it contains is moved to the indicated

address in memory.

3) When the End record is encountered, the loader jumps to the specified address to begin

execution of the loaded program.

44

An example object program is shown in Fig (a).

Fig (b) shows a representation of the program from Fig (a) after loading.

45

Algorithm for Absolute Loader

 It is very important to realize that in Fig (a), each printed character represents one

byte of the object program record.

 In Fig (b), on the other hand, each printed character represents one hexadecimal

digit in memory (a half-byte).

 Therefore, to save space and execution time of loaders, most machines store

object programs in a binary form, with each byte of object code stored as a single

byte in the object program.

 In this type of representation a byte may contain any binary value.

 A Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute loader, called a

bootstrap loader, is executed. This bootstrap loads the first program to be run by the

computer – usually an operating system.

Working of a simple Bootstrap loader

 The bootstrap begins at address 0 in the memory of the machine.

 It loads the operating system at address 80.

 Each byte of object code to be loaded is represented on device F1 as two

hexadecimal digits just as it is in a Text record of a SIC object program.

46

 The object code from device F1 is always loaded into consecutive bytes of

memory, starting at address 80. The main loop of the bootstrap keeps the address

of the next memory location to be loaded in register X.

 After all of the object code from device F1 has been loaded, the bootstrap jumps

to address 80, which begins the execution of the program that was loaded.

 Much of the work of the bootstrap loader is performed by the subroutine GETC.

 GETC is used to read and convert a pair of characters from device F1 representing

1 byte of object code to be loaded. For example, two bytes = C “D8” ‘4438’H

converting to one byte ‘D8’H.

 The resulting byte is stored at the address currently in register X, using STCH

instruction that refers to location 0 using indexed addressing.

 The TIXR instruction is then used to add 1 to the value in X.

Source code for bootstrap loader

47

 MACHINE-DEPENDENT LOADER FEATURES

 The absolute loader has several potential disadvantages. One of the most obvious

is the need for the programmer to specify the actual address at which it will be

loaded into memory.

 On a simple computer with a small memory the actual address at which the

program will be loaded can be specified easily.

 On a larger and more advanced machine, we often like to run several independent

programs together, sharing memory between them. We do not know in advance

where a program will be loaded. Hence we write relocatable programs instead of

absolute ones.

 Writing absolute programs also makes it difficult to use subroutine libraries

efficiently. This could not be done effectively if all of the subroutines had pre-

assigned absolute addresses.

 The need for program relocation is an indirect consequence of the change to

larger and more powerful computers. The way relocation is implemented in a

loader is also dependent upon machine characteristics.

 Loaders that allow for program relocation are called relocating loaders or relative

loaders.

 Relocation

Two methods for specifying relocation as part of the object program:

The first method:
 A Modification is used to describe each part of the object code that must be

changed when the program is relocated.

48

Fig(1) :Consider the program

49

 Most of the instructions in this program use relative or immediate addressing.

 The only portions of the assembled program that contain actual addresses are the

extended format instructions on lines 15, 35, and 65. Thus these are the only items

whose values are affected by relocation.

Object program

 Each Modification record specifies the starting address and length of the field

whose value is to be altered.

 It then describes the modification to be performed.

 In this example, all modifications add the value of the symbol COPY, which

represents the starting address of the program.

Fig(2) :Consider a Relocatable program for a Standard SIC machine

50

.

.

.

 The Modification record is not well suited for use with all machine

architectures.Consider, for example, the program in Fig (2) .This is a relocatable

program written for standard version for SIC.

 The important difference between this example and the one in Fig (1) is that the

standard SIC machine does not use relative addressing.

 In this program the addresses in all the instructions except RSUB must modified

when the program is relocated. This would require 31 Modification records,

which results in an object program more than twice as large as the one in Fig (1).

The second method:

 There are no Modification records.

 The Text records are the same as before except that there is a relocation bit

associated with each word of object code.

 Since all SIC instructions occupy one word, this means that there is one relocation

bit for each possible instruction.

Fig (3): Object program with relocation by bit mask

51

 The relocation bits are gathered together into a bit mask following the length

indicator in each Text record. In Fig (3) this mask is represented (in character

form) as three hexadecimal digits.

 If the relocation bit corresponding to a word of object code is set to 1, the

program’s starting address is to be added to this word when the program is

relocated. A bit value of 0 indicates that no modification is necessary.

 If a Text record contains fewer than 12 words of object code, the bits

corresponding to unused words are set to 0.

 For example, the bit mask FFC (representing the bit string 111111111100) in the

first Text record specifies that all 10 words of object code are to be modified

during relocation.

 Example: Note that the LDX instruction on line 210 (Fig (2)) begins a new Text

record. If it were placed in the preceding Text record, it would not be properly

aligned to correspond to a relocation bit because of the 1-byte data value

generated from line 185.

 Program Linking

Consider the three (separately assembled) programs in the figure, each of which consists

of a single control section.

Program 1 (PROGA):

52

Program 2 (PROGB):

Program 3 (PROGC):

53

Consider first the reference marked REF1.

For the first program (PROGA),

 REF1 is simply a reference to a label within the program.

 It is assembled in the usual way as a PC relative instruction.

 No modification for relocation or linking is necessary.

In PROGB, the same operand refers to an external symbol.

 The assembler uses an extended-format instruction with address field set to

00000.

 The object program for PROGB contains a Modification record instructing the

loader to add the value of the symbol LISTA to this address field when the

program is linked.

For PROGC, REF1 is handled in exactly the same way.

Corresponding object programs

PROGA:

54

PROGB:

PROGC:

55

 The reference marked REF2 is processed in a similar manner.

 REF3 is an immediate operand whose value is to be the difference between

ENDA and LISTA (that is, the length of the list in bytes).

 In PROGA, the assembler has all of the information necessary to compute this

value. During the assembly of PROGB (and PROGC), the values of the labels are

unknown.

 In these programs, the expression must be assembled as an external reference

(with two Modification records) even though the final result will be an absolute

value independent of the locations at which the programs are loaded.

 Consider REF4.

 The assembler for PROGA can evaluate all of the expression in REF4 except for

the value of LISTC. This results in an initial value of ‘000014’H and one

Modification record.

 The same expression in PROGB contains no terms that can be evaluated by the

assembler. The object code therefore contains an initial value of 000000 and three

Modification records.

 For PROGC, the assembler can supply the value of LISTC relative to the

beginning of the program (but not the actual address, which is not known until the

program is loaded).

 The initial value of this data word contains the relative address of LISTC

(‘000030’H). Modification records instruct the loader to add the beginning

address of the program (i.e., the value of PROGC), to add the value of ENDA,

and to subtract the value of LISTA.

Fig (4): The three programs as they might appear in memory after loading and

linking.

56

PROGA has been loaded starting at address 4000, with PROGB and PROGC

immediately following.

For example, the value for reference REF4 in PROGA is located at address 4054 (the

beginning address of PROGA plus 0054).

Fig (5): Relocation and linking operations performed on REF4 in PROGA

57

The initial value (from the Text record) is 000014. To this is added the address assigned

to LISTC, which 4112 (the beginning address of PROGC plus 30).

 Algorithm and Data Structures for a Linking Loader

 The algorithm for a linking loader is considerably more complicated than the

absolute loader algorithm.

 A linking loader usually makes two passes over its input, just as an assembler

does. In terms of general function, the two passes of a linking loader are quite

similar to the two passes of an assembler:

 Pass 1 assigns addresses to all external symbols.

 Pass 2 performs the actual loading, relocation, and linking.

 The main data structure needed for our linking loader is an external symbol table

ESTAB.

(1) This table, which is analogous to SYMTAB in our assembler algorithm, is

used to store the name and address of each external symbol in the set of

control sections being loaded.

58

(2) A hashed organization is typically used for this table.

 Two other important variables are PROGADDR (program load address) and

CSADDR (control section address).

(1) PROGADDR is the beginning address in memory where the linked program

is to be loaded. Its value is supplied to the loader by the OS.

(2) CSADDR contains the starting address assigned to the control section

currently being scanned by the loader. This value is added to all relative

addresses within the control section to convert them to actual addresses.

 PASS 1

 During Pass 1, the loader is concerned only with Header and Define record types

in the control sections.

Algorithm for Pass 1 of a Linking loader

1) The beginning load address for the linked program (PROGADDR) is obtained from

the OS. This becomes the starting address (CSADDR) for the first control section in the

input sequence.

2) The control section name from Header record is entered into ESTAB, with value given

by CSADDR. All external symbols appearing in the Define record for the control

59

section are also entered into ESTAB. Their addresses are obtained by adding the value

specified in the Define record to CSADDR.

3) When the End record is read, the control section length CSLTH (which was saved

from the End record) is added to CSADDR. This calculation gives the starting address for

the next control section in sequence.

 At the end of Pass 1, ESTAB contains all external symbols defined in the set of

control sections together with the address assigned to each.

 Many loaders include as an option the ability to print a load map that shows these

symbols and their addresses.

 PASS 2

 Pass 2 performs the actual loading, relocation, and linking of the program.

Algorithm for Pass 2 of a Linking loader

1) As each Text record is read, the object code is moved to the specified address (plus the

current value of CSADDR).

2) When a Modification record is encountered, the symbol whose value is to be used for

modification is looked up in ESTAB.

3) This value is then added to or subtracted from the indicated location in memory.

4) The last step performed by the loader is usually the transferring of control to the

loaded program to begin execution.

 The End record for each control section may contain the address of the first

instruction in that control section to be executed. Our loader takes this as the

transfer point to begin execution. If more than one control section specifies a

transfer address, the loader arbitrarily uses the last one encountered.

 If no control section contains a transfer address, the loader uses the beginning of

the linked program (i.e., PROGADDR) as the transfer point.

 Normally, a transfer address would be placed in the End record for a main

program, but not for a subroutine.

60

This algorithm can be made more efficient. Assign a reference number, which is used

(instead of the symbol name) in Modification records, to each external symbol referred to

in a control section. Suppose we always assign the reference number 01 to the control

section name.

Fig (6): Object programs using reference numbers for code modification

61

62

 MACHINE-INDEPENDENT LOADER FEATURES

 Loading and linking are often thought of as OS service functions. Therefore, most

loaders include fewer different features than are found in a typical assembler.

 They include the use of an automatic library search process for handling external

reference and some common options that can be selected at the time of loading

and linking.

 Automatic Library Search

 Many linking loaders can automatically incorporate routines from a subprogram

library into the program being loaded.

 Linking loaders that support automatic library search must keep track of external

symbols that are referred to, but not defined, in the primary input to the loader.

 At the end of Pass 1, the symbols in ESTAB that remain undefined represent

unresolved external references.

 The loader searches the library or libraries specified for routines that contain the

definitions of these symbols, and processes the subroutines found by this search

exactly as if they had been part of the primary input stream.

 The subroutines fetched from a library in this way may themselves contain

external references. It is therefore necessary to repeat the library search process

until all references are resolved.

 If unresolved external references remain after the library search is completed,

these must be treated as errors.

 Loader Options

 Many loaders allow the user to specify options that modify the standard

processing

 Typical loader option 1: Allows the selection of alternative sources of input.

Ex : INCLUDE program-name (library-name) might direct the loader to read the

designated object program from a library and treat it as if it were part of the

primary loader input.

 Loader option 2: Allows the user to delete external symbols or entire control

sections.

Ex : DELETE csect-name might instruct the loader to delete the named control

section(s) from the set of programs being loaded.

CHANGE name1, name2 might cause the external symbol name1 to be changed

to name2 wherever it appears in the object programs.

63

 Loader option 3: Involves the automatic inclusion of library routines to satisfy

external references.

Ex. : LIBRARY MYLIB

Such user-specified libraries are normally searched before the standard system

libraries. This allows the user to use special versions of the standard routines.

NOCALL STDDEV, PLOT, CORREL

 To instruct the loader that these external references are to remain unresolved. This

avoids the overhead of loading and linking the unneeded routines, and saves the

memory space that would otherwise be required.

 LOADER DESIGN OPTIONS

 Linking loaders perform all linking and relocation at load time.

 There are two alternatives:

1. Linkage editors, which perform linking prior to load time.
2. Dynamic linking, in which the linking function is performed at execution

time.

 Precondition: The source program is first assembled or compiled, producing an

object program.

 A linking loader performs all linking and relocation operations, including

automatic library search if specified, and loads the linked program directly into

memory for execution.

 A linkage editor produces a linked version of the program (load module or

executable image), which is written to a file or library for later execution.

 Linkage Editors

 The linkage editor performs relocation of all control sections relative to the start

of the linked program. Thus, all items that need to be modified at load time have

values that are relative to the start of the linked program.

 This means that the loading can be accomplished in one pass with no external

symbol table required.

 If a program is to be executed many times without being reassembled, the use of a

linkage editor substantially reduces the overhead required.

 Linkage editors can perform many useful functions besides simply preparing an

object program for execution. Ex., a typical sequence of linkage editor commands

used:

INCLUDE PLANNER (PROGLIB)

64

DELETE PROJECT {delete from existing PLANNER}

INCLUDE PROJECT (NEWLIB) {include new version}

REPLACE PLANNER (PROGLIB)

 Linkage editors can also be used to build packages of subroutines or other control

sections that are generally used together. This can be useful when dealing with

subroutine libraries that support high-level programming languages.

 Linkage editors often include a variety of other options and commands like those

discussed for linking loaders. Compared to linking loaders, linkage editors in

general tend to offer more flexibility and control.

Fig (7): Processing of an object program using (a) Linking loader and (b) Linkage

editor

 Dynamic Linking

65

 Linkage editors perform linking operations before the program is loaded for

execution.

 Linking loaders perform these same operations at load time.

 Dynamic linking, dynamic loading, or load on call postpones the linking function

until execution time: a subroutine is loaded and linked to the rest of the program

when it is first called.

 Dynamic linking is often used to allow several executing programs to share one

copy of a subroutine or library, ex. run-time support routines for a high-level

language like C.

 With a program that allows its user to interactively call any of the subroutines of a

large mathematical and statistical library, all of the library subroutines could

potentially be needed, but only a few will actually be used in any one execution.

 Dynamic linking can avoid the necessity of loading the entire library for each

execution except those necessary subroutines.

66

Fig (a): Instead of executing a JSUB instruction referring to an external symbol, the

program makes a load-and-call service request to OS. The parameter of this request is the

symbolic name of the routine to be called.

Fig (b): OS examines its internal tables to determine whether or not the routine is already

loaded. If necessary, the routine is loaded from the specified user or system libraries.

Fig (c): Control is then passed from OS to the routine being called

Fig (d): When the called subroutine completes it processing, it returns to its caller (i.e.,

OS). OS then returns control to the program that issued the request.

Fig (e): If a subroutine is still in memory, a second call to it may not require another load

operation. Control may simply be passed from the dynamic loader to the called routine.

67

 Bootstrap Loaders

 With the machine empty and idle there is no need for program relocation.

 We can specify the absolute address for whatever program is first loaded and this

will be the OS, which occupies a predefined location in memory.

 We need some means of accomplishing the functions of an absolute loader.

1. To have the operator enter into memory the object code for an absolute loader,

using switches on the computer console.

2. To have the absolute loader program permanently resident in a ROM.

3. To have a built –in hardware function that reads a fixed –length record from

some device into memory at a fixed location.

 When some hardware signal occurs, the machine begins to execute this ROM

program.

 On some computers, the program is executed directly in the ROM: on others, the

program is copied from ROM to main memory and executed there.

 The particular device to be used can often be selected via console switches.

 After the read operation is complete, control is automatically transferred to the

address in memory where the record was stored, which contains machine where

the record was stored, which contains machine instructions that load the absolute

program that follow.

 If the loading process requires more instructions that can be read in a single

record, this first record causes the reading of others, and these in turn can cause

the reading of still more records – boots trap.

 The first record is generally referred to as bootstrap loader:

 Such a loader is added to the beginning of all object programs that are to be

loaded into an empty and idle system.

 This includes the OS itself and all stand-alone programs that are to be run without

an OS.

68

UNIT IV

MACROPROCESSORS

INTRODUCTION

Macro Instructions

• A macro instruction (macro)

– It is simply a notational convenience for the programmer to write a

shorthand version of a program.

– It represents a commonly used group of statements in the source program.

– It is replaced by the macro processor with the corresponding group of

source language statements. This operation is called “expanding the

macro”

• For example:

– Suppose it is necessary to save the contents of all registers before calling a

subroutine.

– This requires a sequence of instructions.

– We can define and use a macro, SAVEREGS, to represent this sequence

of instructions.

Macro Processor

• A macro processor

– Its functions essentially involve the substitution of one group of characters

or lines for another.

– Normally, it performs no analysis of the text it handles.

– It doesn’t concern the meaning of the involved statements during macro

expansion.

• Therefore, the design of a macro processor generally is machine independent.

• Macro processors are used in

– assembly language

– high-level programming languages, e.g., C or C++

– OS command languages

– general purpose

Format of macro definition

A macro can be defined as follows

MACRO - MACRO pseudo-op shows start of macro definition.

Name [List of Parameters] – Macro name with a list of formal parameters.

69

…….

…….

……. - Sequence of assembly language instructions.

MEND - MEND (MACRO-END) Pseudo shows the end of macro definition.

Example:

MACRO

SUM X,Y

LDA X

MOV BX,X

LDA Y

ADD BX

MEND

 BASIC MACROPROCESSOR FUNCTIONS

The fundamental functions common to all macro processors are:

1. Macro Definition

2. Macro Invocation

3. Macro Expansion

Macro Definition and Expansion

 Two new assembler directives are used in macro definition:

o MACRO: identify the beginning of a macro definition

o MEND: identify the end of a macro definition

 Prototype for the macro:

o Each parameter begins with ‘&’

label op operands

name MACRO parameters

:

body

:

MEND

 Body: The statements that will be generated as the expansion of the macro.

70

71

 It shows an example of a SIC/XE program using macro Instructions.

 This program defines and uses two macro instructions, RDBUFF and WRDUFF .

 The functions and logic of RDBUFF macro are similar to those of the RDBUFF

subroutine.

 The WRBUFF macro is similar to WRREC subroutine.

 Two Assembler directives (MACRO and MEND) are used in macro definitions.

 The first MACRO statement identifies the beginning of macro definition.

 The Symbol in the label field (RDBUFF) is the name of macro, and entries in the

operand field identify the parameters of macro instruction.

 In our macro language, each parameter begins with character &, which facilitates

the substitution of parameters during macro expansion.

 The macro name and parameters define the pattern or prototype for the macro

instruction used by the programmer. The macro instruction definition has been

deleted since they have been no longer needed after macros are expanded.

 Each macro invocation statement has been expanded into the statements that form

the body of the macro, with the arguments from macro invocation substituted for

the parameters in macro prototype.

 The arguments and parameters are associated with one another according to their

positions.

Macro Invocation

 A macro invocation statement (a macro call) gives the name of the macro

instruction being invoked and the arguments in expanding the macro.

 The processes of macro invocation and subroutine call are quite different.

o Statements of the macro body are expanded each time the macro is

invoked.

o Statements of the subroutine appear only one; regardless of how many

times the subroutine is called.

 The macro invocation statements treated as comments and the statements

generated from macro expansion will be assembled as though they had been

written by the programmer.

72

Macro Expansion

 Each macro invocation statement will be expanded into the statements that form

the body of the macro.

 Arguments from the macro invocation are substituted for the parameters in the

macro prototype.

o The arguments and parameters are associated with one another according

to their positions.

▪ The first argument in the macro invocation corresponds to the first

parameter in the macro prototype, etc.

 Comment lines within the macro body have been deleted, but comments on

individual statements have been retained.

 Macro invocation statement itself has been included as a comment line.

Example of a macro expansion

73

 In expanding the macro invocation on line 190, the argument F1 is substituted for

the parameter and INDEV wherever it occurs in the body of the macro.

 Similarly BUFFER is substituted for BUFADR and LENGTH is substituted for

RECLTH.

 Lines 190a through 190m show the complete expansion of the macro invocation

on line 190.

 The label on the macro invocation statement CLOOP has been retained as a label

on the first statement generated in the macro expansion.

 This allows the programmer to use a macro instruction in exactly the same way as

an assembler language mnemonic.

 After macro processing the expanded file can be used as input to assembler.

 The macro invocation statement will be treated as comments and the statements

generated from the macro expansions will be assembled exactly as though they

had been written directly by the programmer.

74

4.1.1 Macro Processor Algorithm and Data Structures

 It is easy to design a two-pass macro processor in which all macro definitions are

processed during the first pass ,and all macro invocation statements are expanded

during second pass

 Such a two pass macro processor would not allow the body of one macro

instruction to contain definitions of other macros.

Example 1:

Example 2:

75

 Defining MACROS or MACROX does not define RDBUFF and the other macro

instructions. These definitions are processed only when an invocation of

MACROS or MACROX is expanded.

 A one pass macroprocessor that can alternate between macro definition and macro

expansion is able to handle macros like these.

 There are 3 main data structures involved in our macro processor.

Definition table (DEFTAB)

1. The macro definition themselves are stored in definition table (DEFTAB), which

contains the macro prototype and statements that make up the macro body.

2. Comment lines from macro definition are not entered into DEFTAB because they

will not be a part of macro expansion.

Name table (NAMTAB)

1. References to macro instruction parameters are converted to a positional entered

into NAMTAB, which serves the index to DEFTAB.

2. For each macro instruction defined, NAMTAB contains pointers to beginning and

end of definition in DEFTAB.

Argument table (ARGTAB)

1. The third Data Structure in an argument table (ARGTAB), which is used during

expansion of macro invocations.

2. When macro invocation statements are recognized, the arguments are stored in

ARGTAB according to their position in argument list.

3. As the macro is expanded, arguments from ARGTAB are substituted for the

corresponding parameters in the macro body.

76

 The position notation is used for the parameters. The parameter &INDEV has

been converted to ?1, &BUFADR has been converted to ?2.

 When the ?n notation is recognized in a line from DEFTAB, a simple indexing

operation supplies the property argument from ARGTAB.

Algorithm:

 The procedure DEFINE, which is called when the beginning of a macro definition

is recognized, makes the appropriate entries in DEFTAB and NAMTAB.

 EXPAND is called to set up the argument values in ARGTAB and expand a

macro invocation statement.

 The procedure GETLINE gets the next line to be processed

 This line may come from DEFTAB or from the input file, depending upon

whether the Boolean variable EXPANDING is set to TRUE or FALSE.

77

 MACHINE INDEPENDENT MACRO PROCESSOR FEATURES

Machine independent macro processor features are extended features that are not directly

related to architecture of computer for which the macro processor is written.

 Concatenation of Macro Parameter

 Most Macro Processor allows parameters to be concatenated with other character

strings.

 A program contains a set of series of variables:

▪ XA1, XA2, XA3,…

78

▪ XB1, XB2, XB3,…

 If similar processing is to be performed on each series of variables, the

programmer might want to incorporate this processing into a macro instructuion.

 The parameter to such a macro instruction could specify the series of variables to

be operated on (A, B, C …).

 The macro processor constructs the symbols by concatenating X, (A, B, …), and

(1,2,3,…) in the macro expansion.

 Suppose such parameter is named &ID, the macro body may contain a statement:

LDA X&ID1, in which &ID is concatenated after the string “X” and before the

string “1”.

 LDA XA1 (&ID=A)

 LDA XB1 (&ID=B)

 Ambiguity problem:

E.g., X&ID1 may mean

“X” + &ID + “1”

“X” + &ID1
This problem occurs because the end of the parameter is not marked.

 Solution to this ambiguity problem:

Use a special concatenation operator “ ” to specify the end of the parameter

LDA X&ID 1

So that the end of parameter &ID is clearly identified.

Macro definition

Macro invocation statements

79

 The macroprocessor deletes all occurrences of the concatenation operator

immediately after performing parameter substitution, so the character will not

appear in the macro expansion.

 Generation of Unique Labels

 Labels in the macro body may cause “duplicate labels” problem if the macro is

invocated and expanded multiple times.

 Use of relative addressing at the source statement level is very inconvenient,

error-prone, and difficult to read.

 It is highly desirable to

1. Let the programmer use label in the macro body

 Labels used within the macro body begin with $.

2. Let the macro processor generate unique labels for each macro invocation and

expansion.

 During macro expansion, the $ will be replaced with $xx, where xx

is a two-character alphanumeric counter of the number of macro

instructions expanded.

 XX=AA, AB, AC …….

`Consider the definition of WRBUFF

5 COPY START 0
 :

 :

135 TD =X ‘&OUTDEV’
 :

140 JEQ *-3
 :

155 JLT *-14
 :

255 END FIRST

80

 If a label was placed on the TD instruction on line 135, this label would be

defined twice, once for each invocation of WRBUFF.

 This duplicate definition would prevent correct assembly of the resulting

expanded program.

 The jump instructions on line 140 and 155 are written using the re4lative

operands *-3 and *-14, because it is not possible to place a label on line 135 of the

macro definition.

 This relative addressing may be acceptable for short jumps such as “ JEQ *-3”

 For longer jumps spanning several instructions, such notation is very

inconvenient, error-prone and difficult to read.

 Many macroprocessors avoid these problems by allowing the creation of special

types of labels within macro instructions.

RDBUFF definition

 Labels within the macro body begin with the special character $.

Macro expansion

81

 Unique labels are generated within macro expansion.

 Each symbol beginning with $ has been modified by replacing $ with $AA.

 The character $ will be replaced by $xx, where xx is a two-character

alphanumeric counter of the number of macro instructions expanded.

 For the first macro expansion in a program, xx will have the value AA. For

succeeding macro expansions, xx will be set to AB, AC etc.

 Conditional Macro Expansion

 Arguments in macro invocation can be used to:

o Substitute the parameters in the macro body without changing the

sequence of statements expanded.

o Modify the sequence of statements for conditional macro expansion (or

conditional assembly when related to assembler).

▪ This capability adds greatly to the power and flexibility of a macro

language.

Consider the example

82

 Two additional parameters used in the example of conditional macro expansion

o &EOR: specifies a hexadecimal character code that marks the end of a

record

o &MAXLTH: specifies the maximum length of a record

 Macro-time variable (SET symbol)

o can be used to

▪ store working values during the macro expansion

▪ store the evaluation result of Boolean expression

▪ control the macro-time conditional structures

o begins with “&” and that is not a macro instruction parameter

o be initialized to a value of 0

o be set by a macro processor directive, SET

 Macro-time conditional structure

o IF-ELSE-ENDIF

o WHILE-ENDW

Boolean Expression

Macro

Time

variable

83

Implementation of Conditional Macro Expansion (IF-ELSE-ENDIF

Structure)

 A symbol table is maintained by the macroprocessor.

o This table contains the values of all macro-time variables used.

o Entries in this table are made or modified when SET statements are

processed.

o This table is used to look up the current value of a macro-time variable

whenever it is required.

 The testing of the condition and looping are done while the macro is being

expanded.

 When an IF statement is encountered during the expansion of a macro, the

specified Boolean expression is evaluated. If value is

o TRUE

▪ The macro processor continues to process lines from DEFTAB

until it encounters the next ELSE or ENDIF statement.

▪ If ELSE is encountered, then skips to ENDIF

o FALSE

▪ The macro processor skips ahead in DEFTAB until it finds the

next ELSE or ENDLF statement.

Implementation of Conditional Macro Expansion (WHILE-ENDW

Structure)

 When an WHILE statement is encountered during the expansion of a macro, the

specified Boolean expression is evaluated. If value is

o TRUE

▪ The macro processor continues to process lines from DEFTAB

until it encounters the next ENDW statement.

▪ When ENDW is encountered, the macro processor returns to the

preceding WHILE, re-evaluates the Boolean expression, and takes

action again.

o FALSE

▪ The macro processor skips ahead in DEFTAB until it finds the

next ENDW statement and then resumes normal macro expansion.

 Keyword Macro Parameters

84

 Positional parameters

o Parameters and arguments are associated according to their positions in

the macro prototype and invocation. The programmer must specify the

arguments in proper order.

o If an argument is to be omitted, a null argument should be used to

maintain the proper order in macro invocation statement.

o For example: Suppose a macro instruction GENER has 10 possible

parameters, but in a particular invocation of the macro only the 3rd and 9th

parameters are to be specified.

o The statement is GENER ,,DIRECT,,,,,,3.

o It is not suitable if a macro has a large number of parameters, and only a

few of these are given values in a typical invocation.

 Keyword parameters

o Each argument value is written with a keyword that names the

corresponding parameter.

o Arguments may appear in any order.

o Null arguments no longer need to be used.

o If the 3rd parameter is named &TYPE and 9th parameter is named

&CHANNEL, the macro invocation would be

GENER TYPE=DIRECT,CHANNEL=3.

o It is easier to read and much less error-prone than the positional method.

Consider the example

 Here each parameter name is followed by equal sign, which identifies a keyword

parameter and a default value is specified for some of the parameters.

85

Here the value if &INDEV is specified as F3 and the value of &EOR is specified as null.

86

 MACROPROCESSOR DESIGN OPTIONS

 Recursive Macro Expansion

 RDCHAR:

o read one character from a specified device into register A

o should be defined beforehand (i.e., before RDBUFF)

87

Implementation of Recursive Macro Expansion

 Previous macro processor design cannot handle such kind of recursive macro

invocation and expansion, e.g., RDBUFF BUFFER, LENGTH, F1

 Reasons:

1) The procedure EXPAND would be called recursively, thus the invocation

arguments in the ARGTAB will be overwritten.

2) The Boolean variable EXPANDING would be set to FALSE when the

“inner” macro expansion is finished, that is, the macro process would

forget that it had been in the middle of expanding an “outer” macro.

3) A similar problem would occur with PROCESSLINE since this procedure

too would be called recursively.

 Solutions:

1) Write the macro processor in a programming language that allows

recursive calls, thus local variables will be retained.

2) Use a stack to take care of pushing and popping local variables and return

addresses.

 Another problem: can a macro invoke itself recursively?

 One-Pass Macro Processor

 A one-pass macro processor that alternate between macro definition and macro

expansion in a recursive way is able to handle recursive macro definition.

 Because of the one-pass structure, the definition of a macro must appear in the

source program before any statements that invoke that macro.

Handling Recursive Macro Definition

 In DEFINE procedure

o When a macro definition is being entered into DEFTAB, the normal

approach is to continue until an MEND directive is reached.

o This would not work for recursive macro definition because the first

MEND encountered in the inner macro will terminate the whole macro

definition process.

o To solve this problem, a counter LEVEL is used to keep track of the level

of macro definitions.

▪ Increase LEVEL by 1 each time a MACRO directive is read.

▪ Decrease LEVEL by 1 each time a MEND directive is read.

▪ A MEND can terminate the whole macro definition process only

when LEVEL reaches 0.

88

▪ This process is very much like matching left and right parentheses

when scanning an arithmetic expression.

 Two-Pass Macro Processor

 Two-pass macro processor

o Pass 1:

▪ Process macro definition

o Pass 2:

▪ Expand all macro invocation statements

 Problem

o This kind of macro processor cannot allow recursive macro definition, that

is, the body of a macro contains definitions of other macros (because all

macros would have to be defined during the first pass before any macro

invocations were expanded).

Example of Recursive Macro Definition

 MACROS (for SIC)

o Contains the definitions of RDBUFF and WRBUFF written in SIC

instructions.

 MACROX (for SIC/XE)

o Contains the definitions of RDBUFF and WRBUFF written in SIC/XE

instructions.

 A program that is to be run on SIC system could invoke MACROS whereas a

program to be run on SIC/XE can invoke MACROX.

 Defining MACROS or MACROX does not define RDBUFF and WRBUFF.

These definitions are processed only when an invocation of MACROS or

MACROX is expanded.

89

 General-Purpose Macro Processors

Goal

 Macro processors that do not dependent on any particular programming language,

but can be used with a variety of different languages.

Advantages

 Programmers do not need to learn many macro languages.

90

 Although its development costs are somewhat greater than those for a language-

specific macro processor, this expense does not need to be repeated for each

language, thus save substantial overall cost.

Disadvantages

 Large number of details must be dealt with in a real programming language

 Situations in which normal macro parameter substitution should not occur, e.g.,

comments.

 Facilities for grouping together terms, expressions, or statements

 Tokens, e.g., identifiers, constants, operators, keywords

 Syntax

 Macro Processing within Language Translators

Macro processors can be

1) Preprocessors

o Process macro definitions.

o Expand macro invocations.

o Produce an expanded version of the source program, which is then used as

input to an assembler or compiler.

2) Line-by-line macro processor

o Used as a sort of input routine for the assembler or compiler.

o Read source program.

o Process macro definitions and expand macro invocations.

o Pass output lines to the assembler or compiler.

3) Integrated macro processor

Line-by-Line Macro Processor

Benefits

 It avoids making an extra pass over the source program.

 Data structures required by the macro processor and the language translator can

be combined (e.g., OPTAB and NAMTAB)

 Utility subroutines can be used by both macro processor and the language

translator.

o Scanning input lines

o Searching tables

o Data format conversion

 It is easier to give diagnostic messages related to the source statements.

 Integrated Macro Processor

91

 An integrated macro processor can potentially make use of any information about

the source program that is extracted by the language translator.

 As an example in FORTRAN

DO 100 I = 1,20

– a DO statement:
• DO: keyword

• 100: statement number

• I: variable name

DO 100 I = 1

– An assignment statement

• DO100I: variable (blanks are not significant in

FORTRAN)

 An integrated macro processor can support macro instructions that depend upon

the context in which they occur.

Drawbacks of Line-by-line or Integrated Macro Processor

 They must be specially designed and written to work with a particular

implementation of an assembler or compiler.

 The cost of macro processor development is added to the costs of the language

translator, which results in a more expensive software.

 The assembler or compiler will be considerably larger and more complex.

UNIT V

TEXT- EDITORS

OVERVIEW OF THE EDITING PROCESS.

An interactive editor is a computer program that allows a user to create and revise

a target document. The term document includes objects such as computer programs,

92

texts, equations, tables, diagrams, line art and photographs-anything that one might find

on a printed page. Text editor is one in which the primary elements being edited are

character strings of the target text. The document editing process is an interactive user-

computer dialogue designed to accomplish four tasks:

1) Select the part of the target document to be viewed and manipulated

2) Determine how to format this view on-line and how to display it.

3) Specify and execute operations that modify the target document.

4) Update the view appropriately.

Traveling – Selection of the part of the document to be viewed and edited. It involves

first traveling through the document to locate the area of interest such as “next

screenful”, ”bottom”,and “find pattern”. Traveling specifies where the area of interest is;

Filtering - The selection of what is to be viewed and manipulated is controlled by

filtering. Filtering extracts the relevant subset of the target document at the point of

interest such as next screenful of text or next statement.

Formatting: Formatting determines how the result of filtering will be seen as a visible

representation (the view) on a display screen or other device.

Editing: In the actual editing phase, the target document is created or altered with a set of

operations such as insert, delete, replace, move or copy.

Manuscript oriented editors operate on elements such as single characters, words, lines,

sentences and paragraphs; Program-oriented editors operates on elements such as

identifiers, keywords and statements

THE USER-INTERFACE OF AN EDITOR.

The user of an interactive editor is presented with a conceptual model of the

editing system. The model is an abstract framework on which the editor and the world on

which the operations are based. The line editors simulated the world of the keypunch

they allowed operations on numbered sequence of 80-character card image lines.

The Screen-editors define a world in which a document is represented as a

quarter-plane of text lines, unbounded both down and to the right. The user sees, through

a cutout, only a rectangular subset of this plane on a multi line display terminal. The

cutout can be moved left or right, and up or down, to display other portions of the

document. The user interface is also concerned with the input devices, the output devices,

and the interaction language of the system.

INPUT DEVICES: The input devices are used to enter elements of text being edited, to

enter commands, and to designate editable elements. Input devices are categorized as: 1)

Text devices 2) Button devices 3) Locator devices

93

1) Text or string devices are typically typewriter like keyboards on which user presses

and release keys, sending unique code for each key. Virtually all computer key boards are

of the QWERTY type.

2) Button or Choice devices generate an interrupt or set a system flag, usually causing

an invocation of an associated application program. Also special function keys are also

available on the key board. Alternatively, buttons can be simulated in software by

displaying text strings or symbols on the screen. The user chooses a string or symbol

instead of pressing a button.

3) Locator devices: They are two-dimensional analog-to-digital converters that position

a cursor symbol on the screen by observing the user‟s movement of the device. The most

common such devices are the mouse and the tablet.

The Data Tablet is a flat, rectangular, electromagnetically sensitive panel. Either the

ballpoint pen like stylus or a puck, a small device similar to a mouse is moved over the

surface. The tablet returns to a system program the co-ordinates of the position on the

data tablet at which the stylus or puck is currently located. The program can then map

these data-tablet coordinates to screen coordinates and move the cursor to the

corresponding screen position. Text devices with arrow (Cursor) keys can be used to

simulate locator devices. Each of these keys shows an arrow that point up, down, left or

right. Pressing an arrow key typically generates an appropriate character sequence; the

program interprets this sequence and moves the cursor in the direction of the arrow on the

key pressed.

VOICE-INPUT DEVICES: which translate spoken words to their textual equivalents,

may prove to be the text input devices of the future. Voice recognizers are currently

available for command input on some systems.

OUTPUT DEVICES The output devices let the user view the elements being edited and

the result of the editing operations.

▪ The first output devices were teletypewriters and other character-printing terminals

that generated output on paper.

▪ Next “glass teletypes” based on Cathode Ray Tube (CRT) technology which uses

CRT screen essentially to simulate the hard-copy teletypewriter.

▪ Today‟s advanced CRT terminals use hardware assistance for such features as

moving the cursor, inserting and deleting characters and lines, and scrolling lines and

pages.

▪ The modern professional workstations are based on personal computers with high

resolution displays; support multiple proportionally spaced character fonts to produce

realistic facsimiles of hard copy documents.

INTERACTION LANGUAGE:

94

The interaction language of the text editor is generally one of several common

types.

The typing oriented or text command-oriented method It is the oldest of the major

editing interfaces. The user communicates with the editor by typing text strings both for

command names and for operands. These strings are sent to the editor and are usually

echoed to the output device. Typed specification often requires the user to remember the

exact form of all commands, or at least their abbreviations. If the command language is

complex, the user must continually refer to a manual or an on-line Help function. The

typing required can be time consuming for in-experienced users.

Function key interfaces: Each command is associated with marked key on the key

board. This eliminates much typing. E.g.: Insert key, Shift key, Control key

Disadvantages:

Have too many unique keys

Multiple key stroke commands

Menu oriented interface A menu is a multiple choice set of text strings or icons which

are graphical symbols that represent objects or operations. The user can perform actions

by selecting items for the menus. The editor prompts the user with a menu. One problem

with menu oriented system can arise when there are many possible actions and several

choices are required to complete an action. The display area of the menu is rather limited

95

Most Text editors have a structure similar to that shown above.

The command Language Processor It accepts input from the user‟s input devices, and analyzes
the tokens and syntactic structure of the commands. It functions much like the lexical and

syntactic phases of a compiler. The command language processor may invoke the semantic

routines directly. In a text editor, these semantic routines perform functions such as editing and
viewing. The semantic routines involve traveling, editing, viewing and display functions. Editing

operations are always specified by the user and display operations are specified implicitly by the

other three categories of operations. Traveling and viewing operations may be invoked either

explicitly by the user or implicitly by the editing operations

Editing Component

In editing a document, the start of the area to be edited is determined by the current

editing pointer maintained by the editing component, which is the collection of modules dealing

with editing tasks. The current editing pointer can be set or reset explicitly by the user using
travelling commands, such as next paragraph and next screen, or implicitly as a side effect of the

previous editing operation such as delete paragraph.

Traveling Component

The traveling component of the editor actually performs the setting of the current editing

and viewing pointers, and thus determines the point at which the viewing and /or editing filtering

begins.

Viewing Component
The start of the area to be viewed is determined by the current viewing pointer. This

pointer is maintained by the viewing component of the editor, which is a collection of modules

responsible for determining the next view. The current viewing pointer can be set or reset

explicitly by the user or implicitly by system as a result of previous editing operation. The
viewing component formulates an ideal view, often expressed in a device independent

intermediate representation. This view may be a very simple one consisting of a window‟s worth

of text arranged so that lines are not broken in the middle of the words.

Display Component

It takes the idealized view from the viewing component and maps it to a physical output

device in the most efficient manner. The display component produces a display by mapping the
buffer to a rectangular subset of the screen, usually a window

Editing Filter
Filtering consists of the selection of contiguous characters beginning at the current point.

The editing filter filters the document to generate a new editing buffer based on the current

editing pointer as well as on the editing filter parameters

Editing Buffer

It contains the subset of the document filtered by the editing filter based on the editing

pointer and editing filter parameters

Viewing Filter

96

When the display needs to be updated, the viewing component invokes the viewing filter.

This component filters the document to generate a new viewing buffer based on the current

viewing pointer as well as on the viewing filter parameters.

Viewing Buffer
It contains the subset of the document filtered by the viewing filter based on the viewing

pointer and viewing filter parameters. E.g. The user of a certain editor might travel to line 75,and
after viewing it, decide to change all occurrences of “ugly duckling” to “swan” in lines 1 through

50 of the file by using a change command such as

[1,50] c/ugly duckling/swan/

As a part of the editing command there is implicit travel to the first line of the file. Lines

1 through 50 are then filtered from the document to become the editing buffer. Successive

substitutions take place in this editing buffer without corresponding updates of the view
In Line editors, the viewing buffer may contain the current line; in screen editors, this

buffer may contain rectangular cut out of the quarter-plane of text. This viewing buffer is then

passed to the display component of the editor, which produces a display by mapping the buffer to
a rectangular subset of the screen, usually called a window.

The editing and viewing buffers, while independent, can be related in many ways. In a

simplest case, they are identical: the user edits the material directly on the screen. On the other
hand, the editing and viewing buffers may be completely disjoint.

Windows typically cover the entire screen or rectangular portion of it. Mapping viewing

buffers to windows that cover only part of the screen is especially useful for editors on

modern graphics based workstations. Such systems can support multiple windows,

simultaneously showing different portions of the same file or portions of different file.

97

This approach allows the user to perform inter-file editing operations much more

effectively than with a system only a single window.

The mapping of the viewing buffer to a window is accomplished by two components of

the system.

(i) First, the viewing component formulates an ideal view often expressed in a

device independent intermediate representation. This view may be a very

simple one consisting of a windows worth of text arranged so that lines are not

broken in the middle of words. At the other extreme, the idealized view may be a

facsimile of a page of fully formatted and typeset text with equations, tables and

figures.

(ii) Second the display component takes these idealized views from the viewing

component and maps it to a physical output device the most efficient manner

possible.

The components of the editor deal with a user document on two levels:

(i) In main memory and

(ii) In the disk file system.

Loading an entire document into main memory may be infeasible. However if

only part of a document is loaded and if many user specified operations require a disk

read by the editor to locate the affected portions, editing might be unacceptably slow. In

some systems this problem is solved by the mapping the entire file into virtual memory

and letting the operating system perform efficient demand paging.

An alternative is to provide is the editor paging routines which read one or more

logical portions of a document into memory as needed. Such portions are often termed

pages, although there is usually no relationship between these pages and the hard copy

document pages or virtual memory pages. These pages remain resident in main memory

until a user operation requires that another portion of the document be loaded.

Editors function in three basic types of computing environment:

(i) Time-sharing environment

(ii) Stand-alone environment and

(iii) Distributed environment.

Each type of environment imposes some constraint on the design of an editor. The Time

–Sharing Environment The time sharing editor must function swiftly within the context

of the load on the computer‟s processor, central memory and I/O devices.

The Stand alone Environment The editor on a stand-alone system must have access to the

functions that the time sharing editors obtain from its host operating system. This may be

provided in pare by a small local operating system or they may be built into the editor itself if the
stand alone system is dedicated to editing. Distributed Environment The editor operating in a

distributed resource sharing local network must, like a standalone editor, run independently on

each user‟s machine and must, like a time sharing editor, content for shared resources such as
files.

98

INTERACTIVE DEBUGGING SYSTEMS

An interactive debugging system provides programmers with facilities that aid in testing

and debugging of programs interactively.

DEBUGGING FUNCTIONS AND CAPABILITIES

Execution sequencing: It is the observation and control of the flow of program execution.
For example, the program may be halted after a fixed number of instructions are executed.

Breakpoints – The programmer may define break points which cause execution to be
suspended, when a specified point in the program is reached. After execution is suspended, the

debugging command is used to analyze the progress of the program and to diagnose errors

detected. Execution of the program can then be removed.

Conditional Expressions – Programmers can define some conditional expressions,

evaluated during the debugging session, program execution is suspended, when conditions are

met, analysis is made, later execution is resumed

Gaits- Given a good graphical representation of program progress may even be useful in

running the program in various speeds called gaits. A Debugging system should also provide

functions such as tracing and traceback. Tracing can be used to track the flow of execution logic
and data modifications. The control flow can be traced at different levels of detail – procedure,

branch, individual instruction, and so on…

Traceback can show the path by which the current statement in the program was reached. It can
also show which statements have modified a given variable or parameter. The statements are

displayed rather than as hexadecimal displacements. Program-display Capabilities It is also

important for a debugging system to have good program display capabilities. It must be possible
to display the program being debugged, complete with statement numbers. Multilingual

Capability A debugging system should consider the language in which the program being

debugged is written. Most user environments and many applications systems involve the use of
different programming languages. A single debugging tool should be available to multilingual

situations.

Context Effects

The context being used has many different effects on the debugging interaction. For
example. The statements are different depending on the language

COBOL - MOVE 6.5 TO X
FORTRAN - X = 6.5

Likewise conditional statements should use the notation of the source language

COBOL - IF A NOT EQUAL TO B
FORTRAN - IF (A .NE. B)

Similar differences exist with respect to the form of statement labels, keywords and so

on.

Display of source code

The language translator may provide the source code or source listing tagged in some

standard way so that the debugger has a uniform method of navigating about it.

99

Optimization:

It is also important that a debugging system be able to deal with optimized code. Many

optimizations involve the rearrangement of segments of code in the program

For eg. - invariant expressions can be removed from loop - separate
loops can be combined into a single loop - redundant expression may be
eliminated - elimination of unnecessary branch instructions The debugging of

optimized code requires a substantial amount of cooperation from the optimizing compiler.

Relationship with Other Parts of the System

An interactive debugger must be related to other parts of the system in many different

ways. Availability Interactive debugger must appear to be a part of the run-time environment and
an integral part of the system. When an error is discovered, immediate debugging must be

possible because it may be difficult or impossible to reproduce the program failure in some other

environment or at some other times. Consistency with security and integrity components User

need to be able to debug in a production environment. When an application fails during a
production run, work dependent on that application stops. Since the production environment is

often quite different from the test environment, many program failures cannot be repeated outside

the production environment. Debugger must also exist in a way that is consistent with the security
and integrity components of the system. Use of debugger must be subjected to the normal

authorization mechanism and must leave the usual audit trails. Someone (unauthorized user) must

not access any data or code. It must not be possible to use the debuggers to interface with any

aspect of system integrity. Coordination with existing and future systems The debugger must co-
ordinate its activities with those of existing and future language compilers and interpreters. It is

assumed that debugging facilities in existing language will continue to exist and be maintained.

The requirement of cross-language debugger assumes that such a facility would be installed as an
alternative to the individual language debuggers.

USER- INTERFACE CRITERIA

The interactive debugging system should be user friendly. The facilities of

debugging system should be organized into few basic categories of functions which

should closely reflect common user tasks.

Full – screen displays and windowing systems

▪ The user interaction should make use of full-screen display and windowing systems.

The advantage of such interface is that the information can be should displayed and

changed easily and quickly.

Menus:

▪ With menus and full screen editors, the user has far less information to enter and

remember

▪ It should be possible to go directly to the menus without having to retrace an entire

hierarchy.

▪ When a full-screen terminal device is not available, user should have an equivalent

action in a linear debugging language by providing commands.

Command language:

▪ The command language should have a clear, logical, simple syntax. Parameters names

should be consistent across set of commands

100

▪ Parameters should automatically be checked for errors for type and range values.

▪ Defaults should be provided for parameters.

▪ Command language should minimize punctuations such as parenthesis, slashes, and

special characters.

On Line HELP facility

▪ Good interactive system should have an on-line HELP facility that should provide

help for all options of menu

▪ Help should be available from any state of the debugging system.

	CST305 – SYSTEM SOFTWARE
	REFERENCES
	UNIT I
	SYSTEM SOFTWARE
	TYPES OF SYSTEM SOFTWARE:
	OPERATING SYSTEM
	LANGUAGE TRANSLATORS
	Source Program Object Program
	High level language Machine language program
	Interpreter Memory

	THE SIMPLIFIED INSTRUCTIONAL COMPUTER (SIC):
	SIC Machine Structure:
	Memory:
	Registers:
	Data formats:
	Instruction formats:
	Addressing modes:
	Instruction set:
	Input and Output:

	SIC/XE ARCHITECTURE & SYSTEM SPECIFICATION
	Memory:
	Registers:
	Data Format:
	Instruction Format:
	Instructions:
	Input and Output (I/O):

	UNIT II ASSEMBLERS
	BASIC ASSEMBLER FUNCTIONS
	Figure 2.1: Assembler language program for basic SIC version

	A Simple SIC Assembler
	Object program format contains three types of records:
	Record format is as follows:
	Text record:
	End record:
	Functions of the two passes of assembler:
	Pass 2 (Assemble instructions and generate object programs)

	Assembler Algorithm and Data Structures
	Location Counter (LOCCTR) :
	Operation Code Table (OPTAB) :
	Symbol Table (SYMTAB) :

	MACHINE DEPENDENT ASSEMBLER FEATURES
	Instruction Formats and Addressing Modes
	Translation

	Program Relocation
	Example: Program Relocation
	Modification record

	MACHINE INDEPENDENT ASSEMBLER FEATURES
	Literals vs. Immediate Operands
	Literal Pools
	Duplicate literals
	Problem of duplicate-literal recognition
	Literal table - LITTAB
	Implementation of Literals Pass 1
	Pass 2

	Symbol-Defining Statements
	Example: using ORG
	Forward-Reference Problem

	Expressions
	Relocation Problem in Expressions
	Restriction of Relative Expressions
	Handling Relative Symbols in SYMTAB

	Program Blocks
	Assembler directive: USE
	Example
	Rearrange Codes into Program Blocks
	Program Blocks Loaded in Memory

	Control Sections and Program Linking
	External Definition and Reference
	External Reference Handling
	Records for Object Program
	Object Program

	ASSEMBLER DESIGN
	One-pass assembler
	Load-and-Go Assembler
	One-Pass Assemblers
	Sample program for a one-pass assembler
	Object Code in Memory and SYMTAB
	If One-Pass Assemblers need to produce object codes

	Two-pass assembler with overlay structure
	Multi-Pass Assemblers
	Implementation
	Example of Multi-pass assembler

	UNIT III LOADERS AND LINKERS
	INTRODUCTION
	BASIC LOADER FUNCTIONS
	Design of an Absolute Loader
	An example object program is shown in Fig (a).
	Algorithm for Absolute Loader

	A Simple Bootstrap Loader
	Working of a simple Bootstrap loader

	MACHINE-DEPENDENT LOADER FEATURES
	Relocation
	Fig(1) :Consider the program
	Object program

	.
	. (1)
	Fig (3): Object program with relocation by bit mask
	Program Linking
	Corresponding object programs PROGA:
	PROGC:
	 Consider REF4.
	Fig (4): The three programs as they might appear in memory after loading and linking.
	Fig (5): Relocation and linking operations performed on REF4 in PROGA

	Algorithm and Data Structures for a Linking Loader
	ESTAB.
	CSADDR (control section address).
	PASS 1
	Algorithm for Pass 1 of a Linking loader
	PASS 2
	Algorithm for Pass 2 of a Linking loader

	MACHINE-INDEPENDENT LOADER FEATURES
	Automatic Library Search
	Loader Options
	LOADER DESIGN OPTIONS
	Linkage Editors
	Dynamic Linking
	Bootstrap Loaders
	UNIT IV MACROPROCESSORS
	INTRODUCTION
	Macro Instructions
	Macro Processor
	Format of macro definition
	Example:

	BASIC MACROPROCESSOR FUNCTIONS
	Macro Definition and Expansion
	Macro Invocation
	Macro Expansion
	4.1.1 Macro Processor Algorithm and Data Structures
	Example 1:
	Definition table (DEFTAB)
	Name table (NAMTAB)
	Argument table (ARGTAB)
	Algorithm:

	MACHINE INDEPENDENT MACRO PROCESSOR FEATURES
	Concatenation of Macro Parameter
	Macro definition

	Generation of Unique Labels
	`Consider the definition of WRBUFF
	RDBUFF definition
	Macro expansion

	Conditional Macro Expansion
	Consider the example
	Implementation of Conditional Macro Expansion (IF-ELSE-ENDIF Structure)
	Implementation of Conditional Macro Expansion (WHILE-ENDW Structure)

	Keyword Macro Parameters
	 Positional parameters
	 Keyword parameters
	Consider the example

	MACROPROCESSOR DESIGN OPTIONS
	Implementation of Recursive Macro Expansion

	One-Pass Macro Processor
	Handling Recursive Macro Definition

	Two-Pass Macro Processor
	Example of Recursive Macro Definition

	General-Purpose Macro Processors
	Goal
	Advantages
	Disadvantages

	Macro Processing within Language Translators
	1) Preprocessors
	2) Line-by-line macro processor
	3) Integrated macro processor
	Integrated Macro Processor
	Drawbacks of Line-by-line or Integrated Macro Processor
	UNIT V TEXT- EDITORS
	THE USER-INTERFACE OF AN EDITOR.
	INTERACTION LANGUAGE:
	Disadvantages:
	(i) In main memory and
	(i) Time-sharing environment
	(iii) Distributed environment.
	USER- INTERFACE CRITERIA
	Full – screen displays and windowing systems
	Menus:
	Command language:
	On Line HELP facility

